
Chapter 2

Classic Machine Learning Methods

Johann Faouzi and Olivier Colliot

Abstract

In this chapter, we present the main classic machine learning methods. A large part of the chapter is devoted
to supervised learning techniques for classification and regression, including nearest neighbor methods,
linear and logistic regressions, support vector machines, and tree-based algorithms. We also describe the
problem of overfitting as well as strategies to overcome it. We finally provide a brief overview of unsuper-
vised learning methods, namely, for clustering and dimensionality reduction. The chapter does not cover
neural networks and deep learning as these will be presented in Chaps. 3, 4, 5, and 6.

Key words Machine learning, Classification, Regression, Clustering, Dimensionality reduction

1 Introduction

This chapter presents the main classic machine learning
(ML) methods. There is a focus on supervised learning methods
for classification and regression, but we also describe some unsu-
pervised approaches. The chapter is meant to be readable by some-
one with no background in machine learning. It is nevertheless
necessary to have some basic notions of linear algebra, probabilities,
and statistics. If this is not the case, we refer the reader to Chapters
2 and 3 of [1].

The rest of this chapter is organized as follows. Rather than
grouping methods by categories (for instance, classification or
regression methods), we chose to present methods by increasing
order of complexity. We first provide the notations in Subheading
2. We then describe a very intuitive family of methods, that of
nearest neighbors (Subheading 3). We continue with linear regres-
sion (Subheading 4) and logistic regression (Subheading 5), the
latter being a classification technique. We subsequently introduce
the problem of overfitting (Subheading 6) as well as strategies to
mitigate it (Subheading 7). Subheading 8 describes support vector
machines (SVM). Subheading 9 explains how binary classification
methods can be extended to a multi-class setting. We then describe

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_2,
© The Author(s) 2023

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3195-9_2&domain=pdf
https://doi.org/10.1007/978-1-0716-3195-9_3
https://doi.org/10.1007/978-1-0716-3195-9_4
https://doi.org/10.1007/978-1-0716-3195-9_5
https://doi.org/10.1007/978-1-0716-3195-9_6
https://doi.org/10.1007/978-1-0716-3195-9_2#DOI

methods which are specifically adapted to the case of normal dis-
tributions (Subheading 10). Decision trees and random forests are
described in Subheading 11. We then briefly describe some unsu-
pervised learning techniques, namely, for clustering (Subheading
12) and dimensionality reduction (Subheading 13). The chapter
ends with a description of kernel methods which can be used to
extend linear techniques to non-linear cases (Subheading 14).
Box 1 summarizes the methods presented in this chapter, grouped
by categories and then sorted in order of appearance.

26 Johann Faouzi and Olivier Colliot

Box 1: Main Classic ML Methods

• Supervised learning

– Classification: nearest neighbors, logistic regression, sup-
port vector machine (SVM), naive Bayes, linear discrimi-
nant analysis (LDA), quadratic discriminant analysis, tree-
based models (decision tree, random forest, extremely
randomized trees)

– Regression: nearest neighbors, linear regression, support
vector machine regression, tree-based models (decision
tree, random forest, extremely randomized trees), kernel
ridge regression

• Unsupervised learning

– Clustering: k-means, Gaussian mixture model

– Dimensionality reduction: principal component analysis
(PCA), linear discriminant analysis (LDA), kernel principal
component analysis

2 Notations

Let n be the number of samples and p be the number of features. An
input sample is thus a p-dimensional vector:

x =

x1

⋮

xp

An output sample is denoted by y. Thus, a sample is (x, y). The
dataset of n samples can then be summarized as an n× p matrix X
representing the input data and an n-dimensional vector y repre-
senting the target data:

Classic Machine Learning Methods 27

X =

xð1Þ

⋮

xðnÞ
=

x
ð1Þ
1 . . . x

ð1Þ
p

⋮ ⋱ ⋮

x
ðnÞ
1 . . . x

ðnÞ
p

, y =

y1

⋮

yn

The input space is denoted by I, and the set of training samples is
denoted by X.

In the case of regression, y is a real number. In the case of
classification, y is a single label. More precisely, y can only take one
of a finite set of values called labels. The set of possible classes (i.e.,
labels) is denoted by C = fC 1, . . ., C qg, with q being the number of
classes. As the values of the classes are not meaningful, when there
are only two classes, the classes are often called the positive and
negative classes. In this case and also for mathematical reasons,
without loss of generality, we assume the values of the classes to
be + 1 and -1.

3 Nearest Neighbor Methods

One of the most intuitive approaches to machine learning is nearest
neighbors. It is based on the following intuition: for a given input,
its corresponding output is likely to be similar to the outputs of
similar inputs. A real-life metaphor would be that if a subject has
similar characteristics than other subjects who were diagnosed with
a given disease, then this subject is likely to also be suffering from
this disease.

More formally, nearest neighbor methods use the training
samples from the neighborhood of a given point x, denoted by
N(x), to perform prediction [2].

For regression tasks, the prediction is computed as a weighted
mean of the target values in N(x):

ŷ =
xðiÞ∈N ðxÞ

w
ðxÞ
i yðiÞ

where w
ðxÞ
i is the weight associated with x(i) to predict the output of

x, with w
ðxÞ
i ≥0 8i and iw

ðxÞ
i =1.

For classification tasks, the predicted label corresponds to the
label with the largest weighted sum of occurrences of each label:

ŷ = arg max
C xðiÞ∈N ðxÞ

w
ðxÞ
i 1yðiÞ = C k

A key parameter of nearest neighbor methods is the metric,
denoted by d, that is, a mathematical function that defines dissimi-
larity. The metric is used to define the neighborhood of any point
and can also be used to compute the weights.

28 Johann Faouzi and Olivier Colliot

3.1 Metrics Many metrics have been defined for various types of input data such
as vectors of real numbers, integers, or booleans. Among these
different types, vectors of real numbers are one of the most com-
mon types of input data, for which the most commonly used metric
is the Euclidean distance, defined as:

8x, x ′∈ I , kx - x ′ k2 =
p

j =1

ðxj - x 0 j Þ2

The Euclidean distance is sometimes referred to as the “ordinary”
distance since it is the one based on the Pythagorean theorem and
that everyone uses in their everyday lives.

3.2 Neighborhood The two most common definitions of the neighborhood rely on
either the number of neighbors or the radius around the given
point. Figure 1 illustrates the differences between both definitions.

The k-nearest neighbor method defines the neighborhood of a
given point x as the set of the k closest points to x:

N ðxÞ= fxðiÞgk i =1 with dðx, xð1ÞÞ≤ . . . ≤ dðx, xðnÞÞ
The radius neighbor method defines the neighborhood of a

given point x as the set of points whose dissimilarity to x is smaller
than the given radius, denoted by r:

N ðxÞ= fxðiÞ∈X j dðx, xðiÞÞ< rg

0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

k-nearest neighbors (k = 5)

0.0 0.5 1.0

Radius neighbors (r = 0.2)

Fig. 1 Different definitions of the neighborhood. On the left, the neighborhood of
a given point is the set of its five nearest neighbors. On the right, the neighbor-
hood of a given point is the set of points whose dissimilarity is lower than the
radius. For a given input, its neighborhood may be different depending on the
definition used. The Euclidean distance is used as the metric in both examples

that is, if the metric d satisfies the following properties:

Classic Machine Learning Methods 29

3.3 Weights The two most common approaches to compute the weights are
to use:

• Uniform weights (all the weights are equal):

8i, wðxÞ
i =

1
jN ðxÞj

• Weights inversely proportional to the dissimilarity:

8i, wðxÞ
i =

1

dðxðiÞ, xÞ
j

1

dðxðjÞ, xÞ
=

1

dðxðiÞ, xÞ j
1

dðxðjÞ, xÞ

With uniform weights, every point in the neighborhood equally
contributes to the prediction. With weights inversely proportional
to the dissimilarity, closer points contribute more to the prediction
than further points. Figure 2 illustrates the different decision func-
tions obtained with uniform weights and weights inversely propor-
tional to the dissimilarity for a 3-nearest neighbor classification
model.

3.4 Neighbor Search The brute-force method to compute the neighborhood for
n points with p features is to compute the metric for each pair of
inputs, which has a Oðn2 pÞ algorithmic complexity (assuming that
evaluating the metric for a pair of inputs has a complexity of OðpÞ,
which is the case for most metrics). However, it is possible to
decrease this algorithmic complexity if the metric is a distance,

1. Non-negativity: 8a, b, d(a, b)≥0

2. Identity: 8a, b, d(a, b)=0 if and only if a= b

Training samples Uniform weights
Weights inversely proportional

to the dissimilarity

Fig. 2 Impact of the definition of the weights on the prediction function of a
3-nearest neighbor classification model. When the weights are inversely propor-
tional to the dissimilarity, the classifier is more subject to outliers since the
predictions in the close neighborhood of any input are mostly dedicated by the
label of this input, independently of the number of neighbors used. With uniform
weights, the prediction function tends to be smoother

s

30 Johann Faouzi and Olivier Colliot

3. Symmetry: 8a, b, d(a, b)= d(b, a)

4. Triangle inequality: 8a, b, c, d(a, b) + d(b, c)≥ d(a, c)

The key property is the triangle inequality, which has a simple
interpretation: the shortest path between two points is a straight
line. Mathematically, if a is far from c and c is close to b (i.e., d(a, c)
is large and d(b, c) is small), then a is far from b (i.e., d(a, b) i
large). This is obtained by rewriting the triangle inequality as
follows:

8a, b, c, dða, bÞ≥ dða, cÞ- dðb, cÞ
This means that it is not necessary to compute d(a, b) in this case.
Therefore, the computational cost of a nearest neighbor search can
be reduced to OðnlogðnÞpÞ or better, which is a substantial
improvement over the brute-force method for large n. Two popu-
lar methods that take advantage of this property are the K-dimen-
sional tree structure [3] and the ball tree structure [4].

4 Linear Regression

Linear regression is a regression model that linearly combines the
features. Each feature is associated with a coefficient that represents
the relative weight of this feature compared to the other features. A
real-life metaphor would be to see the coefficients as the ingredients
of a recipe: the key is to find the best balance (i.e., proportions)
between all the ingredients in order to make the best cake.

Mathematically, a linear model is a model that linearly com-
bines the features [5]:

f ðxÞ=w0 þ
p

j =1

wjxj

A common notation consists in including a 1 in x so that f(x) can be
written as the dot product between the vector x and the vector w:

f ðxÞ=w0 ×1þ
p

j =1

wjxj = x⊤w

where the vector w consists of:

• The intercept (also known as bias) w0

• The coefficients (w1, . . ., wp), where each coefficient wj is asso-
ciated with the corresponding feature xj

In the case of linear regression, f(x) is the predicted output:

ŷ = f ðxÞ= x⊤w

Classic Machine Learning Methods 31

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0

1.5

2.0

2.5

y

Simple linear regression

Target data
Prediction
Error

Fig. 3 Ordinary least squares regression. The coefficients (i.e., the intercept and
the slope with a single predictor) are estimated by minimizing the sum of the
squared errors

There are several methods to estimate the w coefficients. In this
section, we present the oldest one which is known as ordinary least
squares regression.

In the case of ordinary least squares regression, the cost func-
tion J is the sum of the squared errors on the training data (see
Fig. 3):

J ðwÞ=
n

i =1

yðiÞ - ŷðiÞ
2
=

n

i =1

yðiÞ - xðiÞ⊤w
2
= ky -Xwk2 2

One wants to find the optimal parameters w⋆ that minimize the
cost function:

w⋆ = arg min
w

J ðwÞ

This optimization problem is convex, implying that any local mini-
mum is a global minimum, and differentiable, implying that every
local minimum has a null gradient. One therefore aims to find null
gradients of the cost function:

∇w⋆J =0

) 2X⊤ Xw⋆ -2X⊤ y =0

) X⊤ Xw⋆ =X⊤ y

) w⋆ = X⊤ Xð Þ-1
X⊤ y

Ordinary least squares regression is one of the few machine
learning optimization problems for which there exists a closed for-
mula, i.e., the optimal solution can be computed using a finite
number of standard operations such as addition, multiplication,

and evaluations of well-known functions. A summary of linear
regression can be found in Box 2.

32 Johann Faouzi and Olivier Colliot

Box 2: Linear Regression

• Main idea: best hyperplane (i.e., line when p= 1, plane when
p= 2) mapping the inputs and to the outputs.

• Mathematical formulation: linear relationship between the
predicted output ŷ and the input x that minimizes the sum of
squared errors:

ŷ =w⋆
0 þ

n

j =1

w⋆
j xj with w⋆ = arg min

w

n

i =1

yðiÞ - xðiÞ⊤w
2

• Regularization: can be penalized to avoid overfitting (ridge),
to perform feature selection (lasso), or both (elastic-net). See
Subheading 7.

5 Logistic Regression

Intuitively, linear regression consists in finding the line that best fits
the data: the true output should be as close to the line as possible.
For binary classification, one wants the line to separate both classes
as well as possible: the samples from one class should all be in one
subspace, and the samples from the other class should all be in the
other subspace, with the inputs being as far as possible from
the line.

Mathematically, for binary classification tasks, a linear model is
defined by a hyperplane splitting the input space into two subspaces
such that each subspace is characteristic of one class. For instance, a
line splits a plane into two subspaces in the two-dimensional case,
while a plane splits a three-dimensional space into two subspaces. A
hyperplane is defined by a vector w= (w0, w1, . . ., wp), and f(x)=
x⊤ w corresponds to the signed distance between the input x and the
hyperplane w: in one subspace, the distance with any input is always
positive, whereas in the other subspace, the distance with any input
is always negative. Figure 4 illustrates the decision function in the
two-dimensional case where both classes are linearly separable.

The sign of the signed distance corresponds to the decision
function of a linear binary classification model:

ŷ = signðf ðxÞÞ=
þ1 if f ðxÞ>0

-1 if f ðxÞ<0

Þ

Þ

Classic Machine Learning Methods 33

Fig. 4 Decision function of a logistic regression model. A logistic regression is a
linear model, that is, its decision function is linear. In the two-dimensional case,
it separates a plane with a line

The logistic regression model is a probabilistic linear model
that transforms the signed distance to the hyperplane into a proba-
bility using the sigmoid function [6], denoted by σðuÞ= 1

1þ exp -uð .
Consider the linear model:

f ðxÞ= x⊤w =w0 þ
p

i = j

wj xj

Then the probability of belonging to the positive class is:

P y= þ 1jx= xð Þ= σðf ðxÞÞ=
1

1þ exp - f ðxÞð Þ
and that of belonging to the negative class is:

P y= -1jx= xð Þ =1-P y= þ 1jx= xð Þ
=

exp - f ðxÞð Þ
1þ exp - f ðxÞð Þ

=
1

1þ exp f ðxÞð Þ
P y= -1jx= xð Þ = σð- f ðxÞÞ

By applying the inverse of the sigmoid function, which is
known as the logit function, one can see that the logarithm of the
odds ratio is modeled as a linear combination of the features:

log
P y= þ 1jx= xð Þ
P y= -1jx= xð Þ = log

P y= þ 1jx= xð Þ
1-P y= þ 1jx= xð = f ðxÞ

(continued)

34 Johann Faouzi and Olivier Colliot

The w coefficients are estimated by maximizing the likelihood
function, that is, the function measuring the goodness of fit of the
model to the training data:

LðwÞ= ∏
n

i =1
P y= yðiÞjx= xðiÞ;w

For computational reasons, it is easier to maximize the log-likeli-
hood, which is simply the logarithm of the likelihood:

logðLðwÞÞ =
n

i =1

log P y= yðiÞjx= xðiÞ;w

=
n

i =1

log σ yðiÞf ðxðiÞ;wÞ

=
n

i =1

- log 1þ exp yðiÞxðiÞ⊤w

logðLðwÞÞ = -
n

i =1

log 1þ exp yðiÞxðiÞ⊤w

Finally, we can rewrite this maximization problem as a minimiza-
tion problem by noticing that
max w logðLðwÞÞ= - min w - log ðLðwÞÞ:

max
w

logðLðwÞÞ= - min
w

n

i =1

log 1þ exp yðiÞxðiÞ⊤w

We can see that the w coefficients that maximize the likelihood are
also the coefficients that minimize the sum of the logistic loss values,
with the logistic loss being defined as:

ℓlogisticðy, f ðxÞÞ= log 1þ exp yf ðxÞð Þð Þ= log ð2Þ
Unlike for linear regression, there is no closed formula for this
minimization. One thus needs to use an optimization method
such as gradient descent which was presented in Subheading 3 of
Chap. 1. In practice, more sophisticated approaches such as quasi-
Newton methods and variants of stochastic gradient descent are
often used. The main concepts underlying logistic regression can be
found in Box 3.

Box 3: Logistic Regression

• Main idea: best hyperplane (i.e., line) that separates two
classes.

• Mathematical formulation: the signed distance to the
hyperplane is mapped into the probability to belong to the
positive class using the sigmoid function:

https://doi.org/10.1007/978-1-0716-3195-9_1

Classic Machine Learning Methods 35

f ðxÞ=w0 þ
j =1

wjxj

Pðy= þ 1jx= xÞ= σðf ðxÞÞ=
1

1þ expð- f ðxÞÞ

Box 3 (continued)
n

• Estimation: likelihood maximization.

• Regularization: can be penalized to avoid overfitting (ℓ2
penalty), to perform feature selection (ℓ1 penalty), or both
(elastic-net penalty).

6 Overfitting and Regularization

The original formulations of ordinary least squares regression and
logistic regression are unregularized models, that is, the model is
trained to fit the training data as much as possible. Let us consider a
real-life example as it is very similar to human learning. If a person
learns by heart the content of a book, they are able to solve the
exercises in the book, but unable to apply the theoretical concepts
to new exercises or real-life situations. If a person only quickly reads
through the book, they are probably unable to solve neither the
exercises in the book nor new exercises.

The corresponding concepts are known as overfitting and
underfitting in machine learning. Overfitting occurs when a
model fits too well the training data and generalizes poorly to
new data. Oppositely, underfitting occurs when a model does not
capture well enough the characteristics of the training data and thus
also generalizes poorly to new data.

Overfitting and underfitting are related to frequently used
terms in machine learning: bias and variance. Bias is defined as
the expected (i.e., mean) difference between the true output and
the predicted output. Variance is defined as the variability of the
predicted output. For instance, let us consider a model predicting
the age of a person from a picture. If the model always under-
estimates or overestimates the age, then the model is biased. If
the model makes both large and small errors, then the model has a
high variance.

Ideally, one would like to have a model with a small bias and a
small variance. However, the bias of a model tends to increase when
decreasing its variance, and the variance of the model tends to
increase when decreasing its bias. This phenomenon is known as
the bias-variance trade-off. Figure 5 illustrates this phenomenon.
One can also notice it by computing the squared error between the
true output y (fixed) and the predicted output ŷ (random variable):
its expected value is the sum of the squared bias of ŷ and the
variance of ŷ:

36 Johann Faouzi and Olivier Colliot

−3

−2

−1

0

1

2

3
High bias, high variance High bias, low variance

−2 0 2
−3

−2

−1

0

1

2

3
Low bias, high variance

−2 0 2

Low bias, low variance

Complexity

E
rr
or

Underfitting
(high bias, low variance)

Overfitting
(low bias, high variance)

Training set
Test set

Fig. 5 Illustration of underfitting and overfitting. Underfitting occurs when a
model is too simple and does not capture well enough the characteristics of
the training data, leading to high bias and low variance. Oppositely, overfitting
occurs when a model is too complex and learns the noise in the training data,
leading to low bias and high variance

Classic Machine Learning Methods 37

 ðy - ŷÞ2 = y2 -2y ŷ þ ŷ2

= y2 -2y ŷ½ � þ ŷ2
= y2 -2y ŷ½ � þ ŷ2 þ ŷ½ �2 - ŷ½ �2

= ŷ½ �- yð Þ2 þ ŷ2 - ŷ½ �2

= ŷ½ �- yð Þ2 þ ŷ2 - ŷ½ �2

= ŷ½ �- yð Þ2 þ ŷ2 -2 ŷ½ �2 þ ŷ½ �2

= ŷ½ �- yð Þ2 þ ŷ2 -2ŷ ŷ½ � þ ŷ½ �2

= ŷ½ �- yð Þ2 þ ŷ- ŷ½ �ð Þ2

 ðy - ŷÞ2 = ŷ½ �- yð Þ2

bias2

þ Var ŷ½ �
variance

7 Penalized Models

Depending on the class of methods, there exist different strategies
to tackle overfitting.

For neighbor methods, the number of neighbors used to define
the neighborhood of any input and the strategy to compute the
weights are the key hyperparameters to control the bias-variance
trade-off. For models that are presented in the remaining sections
of this chapter, we mention strategies to address the bias-variance
trade-off in their respective sections. In this section, we present the
most commonly used strategies for models whose parameters are
optimized by minimizing a cost function defined as the mean loss
values over all the training samples:

min
w

J ðwÞ with J ðwÞ=
1
n

n

i =1

ℓ yðiÞ, f ðxðiÞ;wÞ

This is, for instance, the case of the linear and logistic regression
methods presented in the previous sections.

7.1 Penalties The main idea is to introduce a penalty term Pen(w) that will
constraint the parameters w to have some desired properties. The
most common penalties are the ℓ2 penalty, the ℓ1 penalty, and the
elastic-net penalty.

7.1.1 ℓ2 Penalty The ℓ2 penalty is defined as the squared ℓ2 norm of the
w coefficients:

38 Johann Faouzi and Olivier Colliot

ℓ2ðwÞ= kwk2 2 =
p

j =1

w2
j

The ℓ2 penalty forces each coefficient wi not to be too large and
makes the coefficients more robust to collinearity (i.e., when some
features are approximately linear combinations of the other
features).

7.1.2 ℓ1 Penalty The ℓ2 penalty forces the values of the parameters not to be too
large, but does not incentivize to make small values tend to zero.
Indeed, the square of a small value is even smaller. When the
number of features is large, or when interpretability is important,
it can be useful to make the model select the most important
features. The corresponding metric is the ℓ0 “norm” (which is not
a proper norm in the mathematical sense), defined as the number of
nonzero elements:

ℓ0ðwÞ= kwk0 =
p

j =1

1wj ≠0

However, the ℓ0 “norm” is neither differentiable nor convex (which
are useful properties to solve an optimization problem, but this is
not further detailed for the sake of conciseness). The best convex
differentiable approximation of the ℓ0 “norm” is the ℓ1 norm (see
Fig. 6), defined as the sum of the absolute values of each element:

ℓ1ðwÞ= kwk1 =
p

j =1

jwj j

7.1.3 Elastic-Net Penalty Both the ℓ2 and ℓ1 penalties have their upsides and downsides. In
order to try to obtain the best of penalties, one can add both
penalties in the objective function. The combination of both penal-
ties is known as the elastic-net penalty:

ENðw, αÞ= αkwk1 þ ð1- αÞkwk2 2
where α∈ [0, 1] is a hyperparameter representing the proportion of
the ℓ1 penalty compared to the ℓ2 penalty.

7.2 New

Optimization Problem

A natural approach would be to add a constraint to the minimiza-
tion problem:

min
w

J ðwÞ subject to PenðwÞ< c ð1Þ
which reads as “Find the optimal parameters that minimize the cost
function J among all the parameters w that satisfy Pen(w)< c” for a
positive real number c. Figure 7 illustrates the optimal solution of a
simple linear regression task with different constraints. This figure

Classic Machine Learning Methods 39

�0
�1
�2

Fig. 6 Unit balls of the ℓ0, ℓ1, and ℓ2 norms. For each norm, the set of points in
2 whose norm is equal to 1 is plotted. The ℓ1 norm is the best convex
approximation to the ℓ0 norm. Note that the lines for the ℓ0 norm extend to
-1 and +1 but are cut for plotting reasons

also highlights the sparsity property of the ℓ1 penalty (the optimal
parameter for the horizontal axis is set to zero) that the ℓ2 penalty
does not have (the optimal parameter for the horizontal axis is small
but different from zero).

Although this approach is appealing due to its intuitiveness and
the possibility to set the maximum possible penalty on the para-
meters w, it leads to a minimization problem that is not trivial to
solve. A similar approach consists in adding the regularization term
in the cost function:

min
w

J ðwÞ þ λ×PenðwÞ ð2Þ
where λ>0 is a hyperparameter that controls the weights of the
penalty term compared to the mean loss values over all the training
samples. This formulation is related to the Lagrangian function of
the minimization problem with the penalty constraint.

This formulation leads to a minimization problem with no
constraint which is much easier to solve. One can actually show
that Eqs. 1 and 2 are related: solving Eq. 2 for a given λ, whose
optimal solution is denoted by w⋆

λ , is equivalent to solving Eq. 1 for
c =Penðw⋆

λ Þ. In other words, solving Eq. 2 for a given λ is equiva-
lent to solving Eq. 1 for c whose value is only known after finding
the optimal solution of Eq. 2.

Figure 8 illustrates the impact of the regularization term λ×Pen
(w) on the prediction function of a kernel ridge regression algo-
rithm (see Subheading 14 for more details) for different values of λ.
For high values of λ, the regularization term is dominating the
mean loss value, making the prediction function not fitting well
enough the training data (underfitting). For small values of λ, the

mean loss value is dominating the regularization term, making the
prediction function fitting too well the training data (overfitting). A
good balance between the mean loss value and the regularization
term is required to learn the best function.

40 Johann Faouzi and Olivier Colliot

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

w1

w2

w� = argminw∈R2 ‖y − Xw‖2 2
w� = argmin‖w‖2

2≤1 ‖y − Xw‖2 2
w� = argmin‖w‖1≤1 ‖y − Xw‖2 2
�2 unit ball
�1 unit ball

0

5

10

15

20

25

30

Fig. 7 Illustration of the minimization problem with a constraint on the penalty
term. The plot represents the value of the loss function for different values of the
two coefficients for a linear regression task. The black star indicates the optimal
solution with no constraint. The green and orange stars indicate the optimal
solutions when imposing a constraint on the ℓ2 and ℓ1 norms of the parameters
w, respectively

Since linear regression is one of the oldest and best-known
models, the aforementioned penalties were originally introduced
for linear regression:

• Linear regression with the ℓ2 penalty is also known as ridge [7]:

min
w

ky -Xwk2 2 þ λkwk2 2

Classic Machine Learning Methods 41

λ = 1000 λ = 100

λ = 10 λ = 1

λ = 0.1 λ = 0.01

λ = 0.001 λ = 0.0001

λ = 0.00001 λ = 0.000001

λ = 0.0000001 λ = 0.00000001

Fig. 8 Illustration of regularization. A kernel ridge regression algorithm is fitted
on the training data (blue points) with different values of λ, which is the weight of
the regularization in the cost function. The smaller the values of λ, the smaller
the weight of the ℓ2 regularization. The algorithm underfits (respectively, overfits)
the data when the value of λ is too large (respectively, low)

42 Johann Faouzi and Olivier Colliot

As in ordinary least squares regression, there exists a closed formula
for the optimal solution:

w⋆ = X⊤ X þ λIð Þ-1
X⊤ y

• Linear regression with the ℓ1 penalty is also known as lasso [8]:

min
w

ky -Xwk2 2 þ λkwk1
• Linear regression with the elastic-net penalty is also known as

elastic-net [9]:

min
w

ky -Xwk2 2 þ λαkwk1 þ λð1- αÞkwk2 2

The penalties can also be added in other models such as logistic
regression, support vector machines, artificial neural networks, etc.

8 Support Vector Machine

Linear and logistic regression take into account every training
sample in order to find the best line, which is due to their
corresponding loss functions: the squared error is zero only if the
true and predicted outputs are equal, and the logistic loss is always
positive. One could argue that the training samples whose outputs
are “easily” well predicted are not relevant: only the training sam-
ples whose outputs are not “easily” well predicted or are wrongly
predicted should be taken into account. The support vector
machine (SVM) is based on this principle (please see Box 4 for an
overview of the SVM).

Box 4: Support Vector Machine

• Main idea: hyperplane (i.e., line) that maximizes the margin
(i.e., the distance between the hyperplane and the closest
inputs to the hyperplane).

• Support vectors: only the misclassified inputs and the inputs
well classified but with low confidence are taken into account.

• Non-linearity: decision function can be non-linear with the
use of non-linear kernels.

• Regularization: ℓ2 penalty.

8.1 Original

Formulation

The original support vector machine was invented in 1963 and was
a linear binary classification method [10]. Figure 9 illustrates the
main concept of its original version. When both classes are linearly

separable, there exist an infinite number of hyperplanes that sepa-
rate both classes. The SVM finds the hyperplane that maximizes the
margin, that is, the distance between the hyperplane and the closest
points of both classes to the hyperplane, while linearly separating
both classes.

Classic Machine Learning Methods 43

Fig. 9 Support vector machine classifier with linearly separable classes. When
two classes are linearly separable, there exist an infinite number of hyperplanes
separating them (left). The decision function of the support vector machine
classifier is the hyperplane that maximizes the margin, that is, the distance
between the hyperplane and the closest points to the hyperplane (right). Support
vectors are highlighted with a black circle surrounding them

The SVM was later updated to non-separable classes [11]. Fig-
ure 10 illustrates the role of the margin in this case. The dashed
lines correspond to the hyperplanes defined by the equations
x⊤ w=+1 and x⊤ w=-1. The margin is the distance between
both hyperplanes and is equal to 2=kwk2 2. It defines which samples
are included in the decision function of the model: a sample is
included if and only if it is inside the margin or outside the margin
and misclassified. Such samples are called support vectors and are
illustrated in Fig. 10 with a black circle surrounding them. In this
case, the margin can be seen a regularization term: the larger the
margin is, the more support vectors are included in the decision
function, the more regularized the model is.

The loss function for the SVM is called the hinge loss and is
defined as:

ℓhingeðy, f ðxÞÞ= max ð0, 1- yf ðxÞÞ
Figure 11 illustrates the curves of the logistic and hinge losses. The
logistic loss is always positive, even when the point is accurately
classified with high confidence (i.e., when yf(x)≫0), whereas the
hinge loss is equal to zero when the point is accurately classified
with good confidence (i.e., when yf(x)≥1). One can see that a
sample (x, y) is a support vector if and only if yf(x)≥1, that is, if
and only if ℓhinge(y, f(x))=0.

44 Johann Faouzi and Olivier Colliot

(‖w‖2
2)

−1

(‖w‖2
2)

−1

x�w = +1

x�w = −1

Fig. 10 Decision function of a support vector machine classifier with a linear
kernel when both classes are not strictly linearly separable. The support vectors
are the training points within the margin of the decision function and the
misclassified training points. The support vectors are highlighted with a black
circle surrounding them

−4 −3 −2 −1 0 1 2 3 4
yf(x)

0

2

4

6

�(
y
,f

(x
))

Logistic loss: �logistic(y, f(x)) = log(1 + exp(yf(x)))/ log(2)

Hinge loss: �hinge(y, f(x)) = max(0, 1 − yf(x))

Fig. 11 Binary classification losses. The logistic loss is always positive, even
when the point is accurately classified with high confidence (i.e., when
yf(x)≫ 0), whereas the hinge loss is equal to zero when the point is accurately
classified with good confidence (i.e., when yf(x)≥ 1)

Classic Machine Learning Methods 45

The optimal w coefficients for the original version are estimated
by minimizing an objective function consisting of the sum of the
hinge loss values and a ℓ2 penalty term (which is inversely propor-
tional to the margin):

min
w

n

i =1

maxð0, 1- yðiÞxðiÞ⊤wÞ þ 1
2C

kwk2 2

8.2 General

Formulation with

Kernels

The SVM was later updated to non-linear decision functions with
the use of kernels [12].

In order to have a non-linear decision function, one could map
the input space I into another space (often called the feature space),
denoted by G, using a function denoted by ϕ:

ϕ : I → G

x ↦ϕðxÞ
The decision function would still be linear (with a dot product), but
in the feature space:

f ðxÞ=ϕðxÞ⊤ w

Unfortunately, solving the corresponding minimization problem is
not trivial:

min
w

n

i =1

max 0, 1- yðiÞϕðxðiÞÞ⊤
w þ 1

2C
kwk2 2 ð3Þ

Nonetheless, two mathematical properties make the use of
non-linear transformations in the feature space possible: the kernel
trick and the representer theorem.

The kernel trick asserts that the dot product in the feature space
can be computed using only the points from the input space and a
kernel function, denoted by K:

8x, x ′∈ I , ϕðxÞ⊤ ϕðx ′ Þ=K ðx, x ′ Þ
The representer theorem [13, 14] asserts that, under certain

conditions on the kernel K and the feature space G associated with
the function ϕ, any minimizer of Eq. 3 admits the following form:

f =
n

i =1

αiKð�, xðiÞÞ

where α solves:

min
α

n

i =1

maxð0, 1- yðiÞ½Kα�iÞ þ 1
2C

α⊤ Kα

s

46 Johann Faouzi and Olivier Colliot

where K is the n×n matrix consisting of the evaluations of the
kernel on all the pairs of training samples: 8i, j∈{1, . . ., n},
Kij=K(x(i) , x(j)).

Because the hinge loss is equal to zero if and only if yf(x) i
greater than or equal to 1, only the training samples (x(i) , y(i)) such
that y(i) f(x(i))<1 have a nonzero αi coefficient. These points are the
so-called support vectors, and this is why they are the only training
samples contributing to the decision function of the model:

SV = fi∈f1, . . . ,ng j αi ≠0g

f ðxÞ=
n

i =1

αiK ðx, xðiÞÞ=
i∈SV

αiKðx, xðiÞÞ

The kernel trick and the representer theorem show that it is
more practical to work with the kernel K instead of the mapping
function ϕ. Popular kernel functions include:

• The linear kernel:

K ðx, x ′ Þ= x⊤x ′

• The polynomial kernel:

Kðx, x 0Þ= ðγ x⊤ x 0 þ c0Þd with γ >0, c0 ≥0, d∈�

• The sigmoid kernel:

Kðx, x ′ Þ= tanh γ x⊤x ′ þ c0ð Þ with γ >0, c0 ≥0

• The radial basis function (RBF) kernel:

Kðx, x ′ Þ= exp - γ kx - x ′ k2 2 with γ >0

The linear kernel yields a linear decision function and is actually
identical to the original formulation of the SVM (one can show that
there is a mapping between the α and w coefficients). Non-linear
kernels allow for non-linear, more complex, decision functions.
This is particularly useful when the data is not linearly separable,
which is the most common use case. Figure 12 illustrates the
decision function and the margin of a SVM classification model
for four different kernels.

The SVM was also extended to regression tasks with the use of
the ε-insensitive loss. Similar to the hinge loss, which is equal to zero
for points that are correctly classified and outside the margin, the ε-
insensitive loss is equal to zero when the error between the true
target value and the predicted value is not greater than ε:

ℓε- insensitiveðy, f ðxÞÞ= max ð0, jy - f ðxÞj- εÞ

Classic Machine Learning Methods 47

Linear kernel Polynomial kernel

RBF kernel Sigmoid kernel

Fig. 12 Impact of the kernel on the decision function of a support vector machine
classifier. A non-linear kernel allows for a non-linear decision function

The objective function for the SVM regression method combines
the values of ε-insensitive loss of the training points and the
ℓ2 penalty:

min
w

n

i =1

max 0, yðiÞ -ϕðxðiÞÞ⊤
w - ε þ 1

2C
kwk2 2

Figure 13 illustrates the curves of three regression losses. The
squared error loss takes very small values for small errors and very
high values for high errors, whereas the absolute error loss takes
small values for small errors and high values for high errors. Both
losses take small but nonzero values when the error is small. On the
contrary, the ε-insensitive loss is null when the error is small and
otherwise equal to the absolute error loss minus ε.

48 Johann Faouzi and Olivier Colliot

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
y − ŷ

0

1

2

3

4

�(
y
, ŷ
)

−ε +ε

Mean squared error (MSE): �MSE(y, ŷ) = (y − ŷ)2
Mean absolute error (MAE): �MAE(y, ŷ) = |y − ŷ|
ε-insensitive loss: �ε-insensitive(y, ŷ) = max(0, |y − ŷ| − ε)

Fig. 13 Regression losses. The squared error loss takes very small values for
small errors and very large values for large errors, whereas the absolute error
loss takes small values for small errors and large values for large errors. Both
losses take small but nonzero values when the error is small. On the contrary,
the ε-insensitive loss is null when the error is small and otherwise equal the
absolute error loss minus ε. When computed over several samples, the squared
and absolute error losses are often referred to as mean squared error (MSE) and
mean absolute error (MAE), respectively

9 Multiclass Classification

The classification methods that we presented so far, logistic regres-
sion and support vector machines, are binary classifiers: they can
only be used when there are only two possible outcomes. However,
in practice, it is common to have more than two possible outcomes.
For instance, differential diagnosis of brain disorders is often
between several, and not only two, diseases.

Several strategies have been proposed to extend any binary
classification method to multiclass classification tasks. They all rely
on transforming the multiclass classification task into several binary
classification tasks. In this section, we present the most commonly
used strategies: one-vs-rest, one-vs-one, and error correcting output
code [15]. Figure 14 illustrates the main ideas of these approaches.
But first, we present a natural extension of logistic regression to
multiclass classification tasks which is often referred to as multino-
mial logistic regression [5].

Classic Machine Learning Methods 49

One-vs-rest

{1} vs. {2, 3, 4, 5}

{2} vs. {1, 3, 4, 5}

{3} vs. {1, 2, 4, 5}

{4} vs. {1, 2, 3, 5}

{5} vs. {1, 2, 3, 4}

One-vs-one

{1} vs. {2}

{1} vs. {3}

{1} vs. {4}

{1} vs. {5}

{2} vs. {3}

{2} vs. {4}

{2} vs. {5}

{3} vs. {4}

{3} vs. {5}

{4} vs. {5}

Output code

{1, 3} vs. {2, 4, 5}

{1, 4, 5} vs. {2, 3}

{2} vs. {1, 3, 4, 5}

{1, 2, 3} vs. {4, 5}

{2, 5} vs. {1, 3, 4}

{2, 3, 4} vs. {1, 5}

{4} vs. {1, 2, 3, 5}
...

...
...

Fig. 14 Main approaches to convert a multiclass classification task into several
binary classification tasks. In the one-vs-rest approach, each class is associated
with a binary classification model that is trained to separate this class from all
the other classes. In the one-vs-one approach, a binary classifier is trained on
each pair of classes. In the error correcting output code approach, the classes
are (randomly) split into two groups, and a binary classifier is trained for each
split

9.1 Multinomial

Logistic Regression

For binary classification, logistic regression is characterized by a
hyperplane: the signed distance to the hyperplane is mapped into
the probability of belonging to the positive class using the sigmoid
function. However, for multiclass classification, a single hyperplane
is not enough to characterize all the classes. Instead, each class C k is
characterized by a hyperplane wk, and, for any input x, one can
compute the signed distance x⊤ wk between the input x and the
hyperplane wk. The signed distances are mapped into probabilities
using the softmax function, defined as

softmax x1, . . ., xq =
exp x1ð Þ
q

j = 1
exp xjð Þ , . . .,

exp xqð Þ
q

j =1
exp xjð Þ , as follows:

8k∈f1, . . ., qg, Pðy= C kjx= xÞ=
exp x⊤wkð Þ

q
j =1 exp x

⊤wj

The coefficients (wk)1≤k≤q are still estimated by maximizing the
likelihood function:

Lðw1, . . .,wqÞ= ∏
n

i =1
∏
q

k=1
P y= C kjx= xðiÞ 1yðiÞ = Ck

which is equivalent to minimizing the negative log-likelihood:

50 Johann Faouzi and Olivier Colliot

- log ðLðw1, . . .,wqÞÞ

= -
n

i =1

q

k=1

1yðiÞ = C k
log P y= C kjx= xðiÞ

=
n

i =1

-
q

k=1

1yðiÞ = C k
log

exp xðiÞ⊤ wk
q

j =1
exp xðiÞ⊤wjð Þ

=
n

i =1

ℓcross�entropy y
ðiÞ, softmax xðiÞ⊤w1, . . ., x

ðiÞ⊤wq

where ℓcross entropy is known as the cross-entropy loss and is defined,
for any label y and any vector of probabilities (π1, . . ., πq), as:

ℓcross- entropyðy, ðπ1, . . . , πqÞÞ= -
q

k=1

1y = C k
logπk

This loss is commonly used to train artificial neural networks on
classification tasks and is equivalent to the logistic loss in the
binary case.

Figure 15 illustrates the impact of the strategy used to handle a
multiclass classification task on the decision function.

9.2 One-vs-Rest A strategy to transform a multiclass classification task into several
binary classification tasks is to fit a binary classifier for each class: the
positive class is the given class, and the negative class consists of all
the other classes merged into a single class. This strategy is known
as one-vs-rest. The advantage of this strategy is that each class is
characterized by a single model, so that it is possible to gain deeper
knowledge about the class by inspecting its corresponding model.
A consequence is that the predictions for new samples take into
account the confidence of the models: the predicted class for a new
input is the class for which the corresponding model is the most
confident that this input belongs to its class. The one-vs-rest strat-
egy is the most commonly used strategy and usually a good default
choice.

9.3 One-vs-One Another strategy is to fit a binary classifier for each pair of classes:
this strategy is known as one-vs-one. The advantage of this strategy is
that the classes in each binary classification task are “pure”, in the
sense that different classes are never merged into a single class.
However, the number of binary classifiers that needs to be trained
is larger for the one-vs-one strategy (1 2 qðq-1Þ) than for the one-
vs-rest strategy (q). Nonetheless, for the one-vs-one strategy, the
number of training samples in each binary classification task is
smaller than the total number of samples, which makes training
each binary classifier usually faster. Another drawback is that this
strategy is less interpretable compared to the one-vs-rest strategy, as
the predicted class corresponds to the class obtaining the most

votes (i.e., winning the most one-vs-one matchups), which does
not take into account the confidence in winning each matchup.1

For instance, winning a one-vs-one matchup with 0.99 probability
gives the same result as winning the same matchup with 0.51
probability, i.e., one vote.

Classic Machine Learning Methods 51

Multinomial One-vs.-rest

One-vs.-one Output code

Fig. 15 Illustration of the impact of the strategy used to handle a multiclass
classification task on the decision function of a logistic regression model

9.4 Error Correcting

Output Code

A substantially different strategy, inspired by the theory of error
correction code, consists in merging a subset of classes into one
class and the other subset into the other class, for each binary
classification task. This data is often called the code book and can
be represented as a matrix whose rows correspond to the classes and
whose columns correspond to the binary classification tasks. The
matrix consists only of -1 and + 1 values that represent the
corresponding label for each class and for each binary task.2 For

1 The confidences are actually taken into account but only in the event of a tie.
2 The values are 0 and 1 when the classifier does not return scores but only probabilities.

any input, each binary classifier returns the score (or probability)
associated with the positive class. The predicted class for this input
is the class whose corresponding vector is the most similar to the
vector of scores, with similarity being assessed with the Euclidean
distance (the lower, the more similar). There exist advanced strate-
gies to define the code book, but it has been argued than a random
code book usually gives as good results as a sophisticated one [16].

52 Johann Faouzi and Olivier Colliot

10 Decision Functions with Normal Distributions

Normal distributions are popular distributions because they are
commonly found in nature. For instance, the distribution of
heights and birth weights of human beings can be approximated
using normal distributions. Moreover, normal distributions are
particularly easy to work with from a mathematical point of view.
For these reasons, a common model consists in assuming that the
training input vectors are independently sampled from normal
distributions.

A possible classification model consists in assuming that, for
each class, all the corresponding inputs are sampled from a normal
distribution with mean vector μk and covariance matrix Σk:

8i such that yðiÞ = C k, x
ðiÞ � N ðμk,ΣkÞ

Using the probability density function of a normal distribution, one
can compute the probability density of any input x associated with
the distribution N ðμk,ΣkÞ of class C k:

pxjy= C k
ðxÞ=

1

ð2πÞpjΣkj
exp -

1
2
½x - μk�⊤ Σ-1

k ½x - μk�

With such a probabilistic model, it is easy to compute the
probability that a sample belongs to class C k using Bayes rule:

Pðy= C kjx= xÞ=
pxjy= C k

ðxÞPðy= C kÞ
pxðxÞ

With normal distributions, it is mathematically easier to work with
log-probabilities:

Þ

Classic Machine Learning Methods 53

logPðy= C kjx= xÞ
= log pxjy= C k

ðxÞþ logPðy= C kÞ- log pxðxÞ
= -

1
2
½x - μk�⊤ Σ-1

k ½x - μk�- 1
2
logjΣkjþ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

= -
1
2
x⊤Σ-1

k x þ x⊤Σ-1
k μk

-
1
2
μ⊤
k Σ

-1
k μk -

1
2
logjΣkjþ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

ð4Þ
It is also possible to make further assumptions on the covari-

ance matrices that lead to different models. In this section, we
present the most commonly used ones: naive Bayes, linear discrimi-
nant analysis, and quadratic discriminant analysis. Figure 16 illus-
trates the covariance matrices and the decision functions for these
models in the two-dimensional case.

10.1 Naive Bayes The naive Bayes model assumes that, conditionally to each class C k,
the features are independent and have the same variance σ2 k :

8k, Σk = σ2 kI p

Equation 4 can thus be further simplified:

logPðy= C kjx= xÞ
= -

1

2σ2 k
x⊤ x þ 1

σ2 k
x⊤ μk -

1

2σ2 k
μ⊤
k μk - log σk þ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

= x⊤W kx þ x⊤wk þ w0k þ s
w

•

here:

W k = - 1
2σ2

I p is the matrix of the quadratic term for class C k.

•
k

wk = 1
σ2
μk is the vector of the linear term for class C k.

•
k

w0k = - 1
2σ2

k

μ⊤
k μk - log σk þ logPðy= C kÞ is the intercept for

class C k.

• s = - p
2 logð2πÞ- log pxðxÞ is a term that does not depend on

class C k.

Therefore, naive Bayes is a quadratic model. The probabilities for
input x to belong to each class C k can then easily be computed:

Pðy= C kjx= xÞ=
exp x⊤W kx þ x⊤wk þ w0kð

k
j =1 exp x

⊤W jx þ x⊤wj þ w0j

54 Johann Faouzi and Olivier Colliot

Naive Bayes
(different conditional variances)

Naive Bayes
(identical conditional variances)

Linear discriminant analysis Quadratic discriminant analysis

Fig. 16 Illustration of decision functions with normal distributions. A
two-dimensional covariance matrix can be represented as an ellipse. In the
naive Bayes model, the features are assumed to be independent and to have the
same variance conditionally to the class, leading to covariance matrices being
represented as circles. When the covariance matrices are assumed to be
identical, the decision functions are linear instead of quadratic

With the naive Bayes model, it is relatively common to have the
conditional variances σ2 k to all be equal:

8k,Σk = σ2 kI p = σ2 I p

In this case, Eq. 4 can be even further simplified:

logPðy= C kjx= xÞ
= -

1

2σ2
x⊤ x þ 1

σ2
x⊤ μk -

1

2σ2
μ⊤
k μk - log σk þ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

= x⊤wk þ w0k þ s

Classic Machine Learning Methods 55

w

•

here:

wk = 1 σ2 μk is the vector of the linear term for class C k.

• w0k = - 1
2σ2 μ

⊤
k μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1
2σ2 x

⊤x - log σ- p
2 logð2πÞ- log pxðxÞ is a term that

does not depend on class C k.

In this case, naive Bayes becomes a linear model.

10.2 Linear

Discriminant Analysis

Linear discriminant analysis (LDA) makes the assumption that all
the covariance matrices are identical but otherwise arbitrary:

8k, Σk =Σ

Therefore, Eq. 4 can be further simplified:

logPðy= C kjx= xÞ
= -

1
2
½x - μk�⊤ Σ-1½x - μk�- 1

2
logjΣjþ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

= -
1
2

x⊤Σ-1 x - x⊤Σ-1 μk - μ⊤
k Σ

-1 x þ μ⊤
k Σ

-1 μk

-
1
2
logjΣjþ logPðy= C kÞ- p

2
logð2πÞ- log pxðxÞ

= - x⊤Σ-1 μk -
1
2
x⊤Σ-1 x -

1
2
μ⊤
k Σ

-1 μk þ logPðy= C kÞ- 1
2
logjΣj

-
p
2
logð2πÞ- log pxðxÞ

= x⊤wk þ w0k þ s
w

•

here:

wk= Σ-1 μk is the vector of coefficients for class C k.

• w0k = - 1
2 μ

⊤
k Σ

-1 μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1
2 x

⊤Σ-1 x - - 1
2 logjΣj- p

2 logð2πÞ- log pxðxÞ is a term
that does not depend on class C k.

Therefore, linear discriminant analysis is a linear model. When Σ is
diagonal, linear discriminant analysis is identical to naive Bayes with
identical conditional variances.

The probabilities for input x to belong to each class C k can then
easily be computed:

Pðy= C kjx= xÞ=
exp x⊤wk þ w0kð Þ

k
j =1 exp x

⊤wj þ w0j

10.3 Quadratic

Discriminant Analysis

Quadratic discriminant analysis makes no assumption on the covari-
ance matrices Σk that can all be arbitrary. Equation 4 can be
written as:

Þ

56 Johann Faouzi and Olivier Colliot

logPðy= C kjx= xÞ
= -

1
2
x⊤Σ-1

k x þ x⊤Σ-1
k μk -

1
2
μ⊤
k Σ

-1
k μk -

1
2
logjΣkj

þ logPðy= C kÞ- p
2
logð2πÞ- log pxðxÞ

= x⊤W kx þ x⊤wk þ w0k þ s
w

•

here:

W k = - 1
2Σ

-1
k is the matrix of the quadratic term for class C k.

• wk =Σ-1
k μk is the vector of the linear term for class C k.

• w0k = - 1
2 μ

⊤
k Σ

-1
k μk -

1
2 logjΣkjþ logPðy= C kÞ is the intercept

for class C k.

• s = - p
2 logð2πÞ- log pxðxÞ is a term that does not depend on

class C k.

Therefore, quadratic discriminant analysis is a quadratic model.
The probabilities for input x to belong to each class C k can then

easily be computed:

Pðy= C kjx= xÞ=
exp x⊤W kx þ x⊤wk þ w0kð

k
j =1 exp x

⊤W jx þ x⊤wj þ w0j

11 Tree-Based Methods

11.1 Decision Tree Binary decisions based on conditional statements are frequently
used in everyday life because they are intuitive and easy to under-
stand. Figure 17 illustrates a general approach when someone is ill.
Depending on conditional statements (severity of symptoms, abil-
ity to quickly consult a specialist), the decision (consult your gen-
eral practitioner or a specialist, or call for emergency services) is
different. Models with such an architecture are often used in
machine learning and are called decision trees.

A decision tree is an algorithm containing only conditional
statements and can be represented with a tree [17]. This graph
consists of:

• Decision nodes for all the conditional statements

• Branches for the potential outcomes of each decision node

• Leaf nodes for the final decision

Figure 18 illustrates a decision tree and its corresponding decision
function. For a given sample, the final decision is obtained by
following its corresponding path, starting at the root node.

A decision tree recursively partitions the feature space in order
to group samples with the same labels or similar target values. At
each node, the objective is to find the best (feature, threshold) pair
so that both subsets obtained with this split are the most pure, that

is, homogeneous. To do so, the best (feature, threshold) pair is
defined as the pair that minimizes an impurity criterion.

Classic Machine Learning Methods 57

Severity of symptoms

Consult your
general practitioner

M
ild

Can you quickly
consult a specialist?

Consult a specialist

Ye
s

Call for
emergency services

No

Severe

Fig. 17 A general thought process when being ill. Depending on conditional
statements (severity of symptoms, ability to quickly consult a specialist), the
decision (consult your general practitioner or a specialist, or call for emergency
services) is different

x1 > −6.26

ŷ = +1

Ye
s

YY

x1 > −4.23

x2 > 3.34

ŷ = +1

Ye
s

YY

ŷ = −1

No

Ye
s

YY

ŷ = −1

No

No

−15 −10 −5 0 5
x1

−10

−5

0

5

10
x
2
−6.26 −4.23

3.34

Fig. 18 A decision tree: (left) the rules learned by the decision tree and (right) the
corresponding decision function

Let S ⊆ X be a subset of training samples. For classification
tasks, the distribution of the classes, that is, the proportion of
each class, is used to measure the purity of the subset. Let pk be
the proportion of samples from class C k in a given partition:

pk =
1
jSj

y∈S

1y = C k

Po

•

pular impurity criteria for classification tasks include:

Gini index: ∑ kpk(1- pk)

• Entropy: - pk logðpkÞ
•

k
Misclassification: 1-maxkpk

y∈S

58 Johann Faouzi and Olivier Colliot

0.0 0.2 0.4 0.6 0.8 1.0
pk

0.0

0.1

0.2

0.3

Im
pu

ri
ty

Gini index
Entropy

Fig. 19 Illustration of Gini index and entropy. The entropy function takes larger
values than the Gini index, especially for pk< 0.8, which thus is more discrimi-
native against heterogeneous subsets (when most classes only represent only a
small proportion of the samples) than Gini index

Figure 19 illustrates the values of the Gini index and the entropy
for a single class C k and for different proportions of samples pk. One
can see that the entropy function takes larger values than the Gini
index, especially for pk<0.8. Since the sum of the proportions is
equal to 1, most classes only represent a small proportion of the
samples. Therefore, a simple interpretation is that entropy is more
discriminative against heterogeneous subsets than the Gini index.
Misclassification only takes into account the proportion of the most
common class and tends to be even less discriminative against
heterogeneous subsets than both entropy and Gini index.

For regression tasks, the mean error from a reference value
(such as the mean or the median) is often used as the impurity
criterion:

• Mean squared error: 1 jSj ðy - yÞ2 with y = 1 jSj y

•
y∈S y∈S

Mean absolute error: 1 jSj jy -medianSðyÞj
Theoretically, a tree can grow until every leaf node is perfectly

pure. However, such a tree would have a lot of branches and would
be very complex, making it prone to overfitting. Several strategies
are commonly used to limit the size of the tree. One approach
consists in growing the tree with no restriction and then pruning
the tree, that is, replacing subtrees with nodes [17]. Other popular
strategies to limit the complexity of the tree are usually applied
while the tree is grown and include setting:

• A maximum depth for the tree

• A minimum number of samples required to be at an internal
node

•

Classic Machine Learning Methods 59

• A minimum number of samples required to split a given
partition

• A maximum number of leaf nodes

• A maximum number of features considered (instead of all the
features) to find the best split

• A minimum impurity decrease to split an internal node

11.2 Random Forest One limitation of decision trees is their simplicity. Decision trees
tend to use a small fraction of the features in their decision function.
In order to use more features in the decision tree, growing a larger
tree is required, but large trees tend to suffer from overfitting, that
is, having a low bias but a high variance. One solution to decrease
the variance without much increasing the bias is to build an ensem-
ble of trees with randomness, hence the name random forest
[18]. An overview of random forests can be found in Box 5.

In a bid to have trees that are not perfectly correlated (thus
building actually different trees), each tree is built using only a
subset of the training samples obtained with random sampling.
Moreover, for each decision node of each tree, only a subset of
the features are considered to find the best split.

The final prediction is obtained by averaging the predictions of
each tree. For classification tasks, the predicted class is either the
most commonly predicted class (hard-voting) or the one with the
highest mean probability estimate (soft-voting) across the trees.
For regression tasks, the predicted value is usually the mean of the
predicted values across the trees.

Box 5: Random Forest

• Random forest: ensemble of decision trees with randomness
introduced to build different trees

• Decision tree: algorithm containing only conditional state-
ments and represented with a tree

Regularization: maximum depth for each tree, minimum
number of samples required to split a given partition, etc.

11.3 Extremely

Randomized Trees

Even though random forests involve randomness in sampling
both the samples and the features, trees inside a random forest
tend to be correlated, thus limiting the variance decrease. In order
to decrease even more the variance of the model (while possibly
increasing its bias) by growing less correlated trees, extremely
randomized trees introduce more randomness [19]. Instead of
looking for the best split among all the candidate (feature,

threshold) pairs, one threshold is drawn at random for each
candidate feature, and the best of these randomly generated
thresholds is chosen as the splitting rule.

60 Johann Faouzi and Olivier Colliot

12 Clustering

So far, we have presented classic machine learning methods for
classification and regression, which are the main components of
supervised learning. Each input x(i) had an associated output y(i) . In
this section, we present clustering, which is an unsupervised
machine learning task. In unsupervised learning, only the inputs
x(i) are available, with no associated outputs. As the ground truth is
not available, the objective is to extract information from the input
data without supervising the learning process with the output data.

Clustering consists in finding groups of samples such that:

• Samples from the same group are similar.

• Samples from different groups are different.

For instance, clustering can be used to identify disease subtypes for
heterogeneous diseases such as Alzheimer’s disease and Parkinson’s
disease.

In this section, we present two of the most common clustering
methods: the k-means algorithm and the Gaussian mixture model.

12.1 k-means The k-means algorithm divides a set of n samples, denoted by X,
into a set of k disjoint clusters, each denoted by X j, such that
X = fX1, . . ., X kg.

Figure 20 illustrates the concept of this algorithm. Each cluster
X j is characterized by its centroid, denoted by μj, that is, the mean of

the samples in this cluster:

−10 −5 0 5 10

−5

0

5

10

k-means

Cluster 1
Centroid of cluster 1
Cluster 2
Centroid of cluster 2
Cluster 3
Centroid of cluster 3

Fig. 20 Illustration of the k-means algorithm. The objective of the algorithm is to
find the centroids that minimize the within-cluster sum-of-squares criterion. In
this example, the inertia is approximately equal to 184.80 and is the lowest
possible inertia, meaning that the represented centroids are optimal

R

I

w

|X |
x ∈Xj

Classic Machine Learning Methods 61

μj =
1
jX j j

xðiÞ∈X j

xðiÞ

The centroids fully define the set of clusters because each sample is
assigned to the cluster whose centroid is the closest.

The k-means algorithm aims at finding centroids that minimize
the inertia, also known as within-cluster sum-of-squares criterion:

min
fμ1, ..., μkg

k

j =1 xðiÞ∈X j

kxðiÞ - μjk2 2

The original algorithm used to find the centroids is often referred
to as Lloyd’s algorithm [20] and is presented in Algorithm 1. After
initializing the centroids, a two-step loop is repeated until conver-
gence (when the centroids are identical for two consecutive itera-
tions) consisting of:

1. The assignment step, where the clusters are updated based on
the current centroids

2. The update step, where the centroids are updated based on the
current clusters

When clusters are well-defined, a point from a given cluster is likely
to stay in this cluster. Therefore, the assignment step can be sped up
thanks to the triangle inequality by keeping track of lower and
upper bounds for distances between points and centers, at the
cost of higher memory usage [21].

Algorithm 1 Lloyd’s algorithm (aka naive k-means algorithm)

esult: Centroids {μ1, . . . ,μk}
nitialize the centroids {μ1, . . . ,μk} ;
hile not converged do

Assignment step: Compute the clusters (i.e., assign each
sample to its nearest centroid):

∀j ∈ {1, . . . , k}, Xj = {x(i) ∈ X | ‖x(i)−μj‖2
2 = min

l
‖x(i)−μl‖2

2}

Update step: Compute the centroids of the updated clusters:

∀j ∈ {1, . . . , k}, μj =
1
j

∑

(i)

x(i)

62 Johann Faouzi and Olivier Colliot

Even though the k-means algorithm is one of the simplest and
most used clustering methods, it has several downsides that should
be kept in mind.

First, the number of clusters k is a hyperparameter. Setting a
value much different from the actual number of clusters may yield
poor clusters.

Second, the inertia is not a convex function. Although Lloyd’s
algorithm is guaranteed to converge, it may converge to a local
minimum that is not a global minimum. Figure 21 illustrates the
convergence to such centroids. Several strategies are often applied
to address this issue, including sophisticated centroid initialization
[22] and running the algorithm numerous times and keeping the
best run (i.e., the one yielding the lowest inertia).

Inertia = 184.80

Inertia = 623.67 Inertia = 953.91

Inertia = 952.08 Inertia = 613.62

Fig. 21 Illustration of the convergence of the k-means algorithm to bad local
minima. In the upper figure, the algorithm converged to a global minimum
because the inertia is equal to the minimum possible value (184.80); thus, the
obtained clusters are optimal. In the four other figures, the algorithm converged
to a local minima that are not global minima because the inertias are higher than
the minimum possible value; thus, the obtained clusters are suboptimal

Classic Machine Learning Methods 63

Third, inertia makes the assumption that the clusters are convex
and isotropic. The k-means algorithm may yield poor results when
this assumption does not hold, such as with elongated clusters or
manifolds with irregular shapes.

Fourth, the Euclidean distance tends to be inflated (i.e., the
ratio of the distances of the nearest and farthest neighbors to a
given target is close to 1) in high-dimensional spaces, making
inertia a poor criterion in such spaces [23]. One can alleviate this
issue by running a dimensionality reduction method such as princi-
pal component analysis prior to the k-means algorithm.

12.2 Gaussian

Mixture Model

A mixture model makes the assumption that each sample is gener-
ated from a mixture of several independent distributions.

Let k be the number of distributions. Each distribution Fj is
characterized by its probability of being picked, denoted by πj, and
its density pj with parameters θj, denoted by pj(�; θj). Let Δ= (Δ1,
. . ., Δk) be a vector-valued random variable such that:

k

j =1

Δj =1 and 8j∈f1, . . ., kg, PðΔj =1Þ=1-PðΔj =0Þ= πj

and (x1, . . ., xk) be independent random variables such that xj�Fj.
The samples are assumed to be generated from a random variable x
with density px such that:

x=
k

j =1

Δjxj

8x∈X, pxðx, θÞ=
k

j =1

πj pj ðx; θj Þ

A Gaussian mixture model is a particular case of a mixture
model in which each distribution Fj is a Gaussian distribution
with mean vector μj and covariance matrix Σj:

8j∈f1, . . ., kg, F j = N ðμj ,Σj Þ
Figure 22 illustrates the learned distributions from a Gaussian
mixture model.

The objective is to find the parameters θ that maximize the
likelihood, with θ= fμjgk j =1

, fΣjgk j =1
, fπjgk j =1

:

LðθÞ= ∏
n

i =1
pX ðxðiÞ; θÞ

For computational reasons, it is easier to maximize the
log-likelihood:

64 Johann Faouzi and Olivier Colliot

−10 −5 0 5 10

−5

0

5

10

Gaussian mixture model

Cluster 1
Mean vector of distribution 1
Covariance of distribution 3
Cluster 2
Mean vector of distribution 2
Covariance of distribution 1
Cluster 3
Mean vector of distribution 3
Covariance of distribution 2

Fig. 22 Gaussian mixture model. For each estimated distribution, the mean
vector and the ellipsis consisting of all the points within one standard deviation
of the mean are plotted

logðLðθÞÞ=
n

i =1

logðpX ðxðiÞ; θÞÞ=
n

i =1

log
k

j =1

πj pj ðx; θj Þ

Because the density pX(�; θ) is a weighted sum of Gaussian densities,
the expression cannot be further simplified.

In order to solve this maximization problem, an algorithm
called expectation-maximization (EM) is often applied [24]. Algo-
rithm 2 describes the main concepts of this algorithm. After initi-
alizing the parameters of each distribution, a two-step loop is
repeated until convergence (when the parameters are stable over
consecutive loops):

• The expectation step, in which the probability for each sample x(i)

to have been generated from distribution Fj is computed

• The maximization step, in which the probability and the para-
meters of each distribution are updated

Because it is impossible to know which samples have been gener-
ated by each distribution, it is also impossible to directly maximize
the log-likelihood, which is why we compute its expected value
using the posterior probabilities, hence the name expectation step.
The second step simply consists in maximizing the expected
log-likelihood, hence the name maximization step.

R

I

w

∀ ∈ { }
n

i=1

Classic Machine Learning Methods 65

Algorithm 2 Expectation-maximization algorithm for Gauss-
ian mixture models

esult: Mean vectors {μj}k
j=1, covariance matrices {Σj}k

j=1 and
probabilities {πj}k

j=1

nitialize the mean vectors {μj}k
j=1, covariance matrices {Σj}k

j=1

and probabilities {πj}k
j=1 ;

hile not converged do

E-step: Compute the posterior probability γi(j) for each sample
x(i) to have been generated from distribution Fj:

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , k}, γi(j) =
πjpj(x(i);θj,Σj)∑k
l=1 πlpj(x(i);θl,Σl)

M-step: Update the parameters of each distribution Fj:

∀j ∈ {1, . . . , k}, μj =
∑n

i=1 γi(j)x(i)
∑n

i=1 γi(j)

∀j ∈ {1, . . . , k}, Σj =
∑n

i=1 γi(j)[x(i) − μj][x(i) − μj]�∑n
i=1 γi(j)

j 1, . . . , k , πj =
1 n∑

γi(j)

Lloyd’s and EM algorithms have a lot of similarities. In the first
step, the assignment step assigns each sample to its closest cluster,
whereas the expectation step computes the probability for each
sample to have been generated from each distribution. In the
second step, the update step computes the centroid of each cluster
as the mean of the samples in a given cluster, while the maximiza-
tion step updates the probability and the parameters of each distri-
bution as a weighted average over all the samples. For these reasons,
the k-means algorithm is often referred to as a hard-voting cluster-
ing method, as opposed to the Gaussian mixture model which is
referred to as a soft-voting clustering method.

The Gaussian mixture model has several advantages over the k-
means algorithm.

First, the use of normal distribution densities instead of Euclid-
ean distances dwindles the inflation issue in high-dimensional
spaces. Second, the Gaussian mixture model includes covariance
matrices, allowing for clusters with elliptical shapes, while the k-
means algorithm only includes centroids, forcing clusters to have
circular shapes.

66 Johann Faouzi and Olivier Colliot

Nonetheless, the Gaussian mixture model also has several draw-
backs, sharing a few with the k-means algorithm.

First, the number of distributions k is a hyperparameter. Setting
a value much different from the actual number of clusters may yield
poor clusters. Second, the log-likelihood is not a concave function.
Like Lloyd’s algorithm, the EM algorithm is guaranteed to con-
verge, but it may converge to a local maximum that is not a global
maximum. Several strategies are often applied to address this issue,
including sophisticated centroid initialization [22] and running the
algorithm numerous times and keeping the best run (i.e., the one
yielding the highest log-likelihood). Third, the Gaussian mixture
model has more parameters than the k-means algorithm. Therefore,
it usually requires more samples to accurately estimate its para-
meters (in particular the covariance matrices) than the k-means
algorithm.

13 Dimensionality Reduction

Dimensionality reduction consists in finding a good mapping from
the input space into a space of lower dimension. Dimensionality
reduction can either be unsupervised or supervised.

13.1 Principal

Component Analysis

For exploratory data analysis, it may be interesting to investigate
the variances of the p features and the 1 2 pðp-1Þ covariances or
correlations. However, as the value of p increases, this process
becomes growingly tedious. Moreover, each feature may explain a
small proportion of the total variance. It may be more desirable to
have another representation of the data where a small number of
features explain most of the total variance, in other words to have a
coordinate system adapted to the input data.

Principal component analysis (PCA) consists in finding a repre-
sentation of the data through principal components [25]. The prin-
cipal components are a sequence of unit vectors such that the ith
vector is the best approximation of the data (i.e., maximizing the
explained variance) while being orthogonal to the first i-1 vectors.

Figure 23 illustrates principal component analysis when the
input space is two-dimensional. On the upper figure, the training
data in the original space is plotted. Both features explain about the
same amount of the total variance, although one can clearly see that
both features are strongly correlated. Principal component analysis
identifies a new Cartesian coordinate system based on the input
data. On the lower figure, the training data in the new coordinate
system is plotted. The first dimension explains much more variance
than the second dimension.

Classic Machine Learning Methods 67

Feature 1 (52.49%)

Fe
at
ur
e
2
(4
7.
51
%
)

Dimension 1 (94.55%)

D
im

en
si
on

 2
 (
5.
45
%
)

Fig. 23 Illustration of principal component analysis. On the upper figure, the training data in the original space
(blue points with black axes) is plotted. Both features explain about the same amount of the total variance,
although one can clearly see a linear pattern. Principal component analysis learns a new Cartesian coordinate
system based on the input data (red axes). On the lower figure, the training data in the new coordinate system
is plotted (green points with red axes). The first dimension explains much more variance than the second
dimension

13.1.1 Full

Decomposition

Mathematically, given an input matrix X∈n × p that is centered
(i.e., the mean value of each column X:,j is equal to zero), the
objective is to find a matrix W∈p × p such that:

• W is an orthogonal matrix, i.e., its columns are unit vectors and
orthogonal to each other.

• The new representation of the input data, denoted by T, consists
of the coordinates in the Cartesian coordinate system induced by
W (whose columns form an orthogonal basis of p with the
Euclidean dot product):

T =XW

• Each column of W maximizes the explained variance.

68 Johann Faouzi and Olivier Colliot

Each column wi= W:,i is a principal component. Each input vector
x is transformed into another vector t using a linear combination of
each feature with the weights from the W matrix:

t = x⊤W

The first principal component w(1) is the unit vector that max-
imizes the explained variance:

w1 = arg max
kwk=1

f
n

i =1

xðiÞ⊤ wk
= arg max

kwk=1

fkXwkg
= arg max

kwk=1

fw⊤ X⊤ Xwkg

w1 = arg max
w∈p

w⊤X⊤ Xw

w⊤w

As X⊤ X is a positive semi-definite matrix, a well-known result from
linear algebra is that w(1) is the eigenvector associated with the
largest eigenvalue of X⊤ X.

The kth component is found by subtracting the first k-1
principal components from X:

X̂ k =X -
k-1

s =1

XwðsÞwðsÞ⊤

and then finding the unit vector that explains the maximum vari-
ance from this new data matrix:

wk = arg max
kwk=1

fk X̂ kwkg= arg max
w∈p

w⊤ X̂
⊤
k X̂ kw

w⊤w

One can show that the eigenvector associated with the kth largest
eigenvalue of the X⊤ X matrix maximizes the quantity to be
maximized.

Therefore, the matrix W is the matrix whose columns are the
eigenvectors of the X⊤ X matrix, sorted by descending order of
their associated eigenvalues.

13.1.2 Truncated

Decomposition

Since each principal component iteratively maximizes the remain-
ing variance, the first principal components explain most of the
total variance, while the last ones explain a tiny proportion of the
total variance. Therefore, keeping only a subset of the ordered
principal components usually gives a good representation of the
input data.

Mathematically, given a number of dimensions l, the new rep-
resentation is obtained by truncating the matrix of principal com-
ponents W to only keep the first l columns, resulting in the
submatrix W:,:l:

Classic Machine Learning Methods 69

−3 −2 −1 0 1 2 3 4

Dimension 1 (92.46%)

−1.0

−0.5

0.0

0.5

1.0

1.5

D
im

en
si
on

 2
 (
5.
31

%
)

Setosa
Versicolor
Virginica

Fig. 24 Illustration of principal component analysis as a dimensionality reduction
technique. The Iris flower dataset consists of 50 samples for each of 3 iris
species (setosa, versicolor, and virginica) for which 4 features were measured,
the length and the width of the sepals and petals, in centimeters. The projection
of each sample on the first two principal components is shown in this figure. The
first dimension explains most of the variance (92.46%)

T
~

=XW :,:l

Figure 24 illustrates the use of principal component analysis as
dimensionality reduction. The Iris flower dataset consists of 50 sam-
ples for each of 3 iris species (setosa, versicolor, and virginica) for
which 4 features were measured, the length and the width of the
sepals and petals, in centimeters. The projection of each sample on
the first two principal components is shown in this figure.

13.2 Linear

Discriminant Analysis

In Subheading 10, we introduced linear discriminant analysis
(LDA) as a classification method. However, it can also be used as
a supervised dimensionality reduction method. LDA fits a multi-
variate normal distribution for each class C k, so that each class is
characterized by its mean vector μk∈p and has the same covariance
matrix Σ∈p × p . However, a set of k points lies in a space of
dimension at most k-1. For instance, a set of 2 points lies on a
line, while a set of 3 points lies on a plane. Therefore, the subspace
induced by the k mean vectors μk can be used as dimensionality
reduction.

There exists another formulation of linear discriminant analysis
which is equivalent and more intuitive for dimensionality reduc-
tion. Linear discriminant analysis aims to find a linear projection so
that the classes are separated as much as possible (i.e., projections of

samples from a same class are close to each other, while projections
of samples from different classes are far from each other).

70 Johann Faouzi and Olivier Colliot

Mathematically, the objective is to find the matrix W∈p × l

(with l≤ k-1) that maximizes the between-class scatter while also
minimizing the within-class scatter:

max
W

tr W⊤ SwWð Þ-1
W⊤ SbWð Þ

The within-class scatter matrix Sw summarizes the diffusion
between the mean vector μk of class C k and all the inputs x(i)

belonging to class C k, over all the classes:

Sw =
q

k=1 yðiÞ = C k

½xðiÞ - μk�½xðiÞ - μk�⊤

The between-class scatter matrix Sb summarizes the diffusion
between all the mean vectors:

Sb =
q

k=1

nk½μk - μ�½μk - μ�⊤

where nk is the proportion of samples belonging to class C k and

μ= q
k=1nkμk = 1 n

n
i =1x

ðiÞ is the mean vector over all the input

vectors.
One can show that the W matrix consists of the first

l eigenvectors of the matrix S -1
w Sb with the corresponding eigen-

values being sorted in descending order. Just as in principal com-
ponent analysis, the corresponding eigenvalues can be used to
determine the contribution of each dimension. However, the crite-
rion for linear discriminant analysis is different from the one from
principal component analysis: it is to maximizing the separability of
the classes instead of maximizing the explained variance.

Figure 25 illustrates the use of linear discriminant analysis as a
dimensionality reduction technique. We use the same Iris flower
dataset as in Fig. 24 illustrating principal component analysis. The
projection of each sample on the learned two-dimensional space is
shown, and one can see that the first (horizontal) axis is more
discriminative of the three classes with linear discriminant analysis
than with principal component analysis.

14 Kernel Methods

Kernel methods allow for generalizing linear models to non-linear
models with the use of kernel functions.

As mentioned in Subheading 8, the main idea of kernel meth-
ods is to first map the input data from the original input space to a
feature space and then perform dot products in this feature space.

Under certain assumptions, an optimal solution of the minimiza-
tion problem of the cost function admits the following form:

Classic Machine Learning Methods 71

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

Dimension 1 (99.12%)

4

5

6

7

8

9

D
im

en
si
on

 2
 (
0.
88
%
)

Setosa
Versicolor
Virginica

Fig. 25 Illustration of linear discriminant analysis as a dimensionality reduction
technique. The Iris flower dataset consists of 50 samples for each of 3 iris
species (setosa, versicolor, and virginica) for which 4 features were measured,
the length and the width of the sepals and petals, in centimeters. The projection
of each sample on the learned two-dimensional space is shown in this figure

f =
n

i =1

αiKð�, xðiÞÞ

where K is the kernel function which is equal to the dot product in
the feature space:

8x, x ′∈ I , Kðx, x ′ Þ=ϕðxÞ⊤ ϕðx ′ Þ
As this term frequently appears, we denote by K the n ×n symmet-
ric matrix consisting of the evaluations of the kernel on all the pairs
of training samples:

8i, j∈f1, . . .,ng, Kij =KðxðiÞ, xðjÞÞ
In this section, we present the extension of two models previ-

ously introduced in this chapter, ridge regression and principal
component analysis, with kernel functions.

14.1 Kernel Ridge

Regression

Kernel ridge regression combines ridge regression with the kernel
trick and thus learns a linear function in the space induced by the
respective kernel and the training data [2]. For non-linear kernels,
this corresponds to a non-linear function in the original input
space.

72 Johann Faouzi and Olivier Colliot

Mathematically, the objective is to find the function f with the
following form:

f =
n

i =1

αiKð�, xðiÞÞ

that minimizes the sum of squared errors with a
ℓ2 penalization term:

min
f

n

i =1

yðiÞ - f ðxðiÞ 2 þ λkf k2

The cost function can be simplified using the specific form of the
possible functions:

n

i =1

ðyðiÞ - f ðxðiÞÞ2 þ λkf k2

=
n

i =1

yðiÞ -
n

j =1

αj kðxðjÞ, xðiÞÞ
2

þ λ
n

i =1

αiK ð�, xðiÞÞ
2

=
n

i =1

yðiÞ -α⊤K :,i
2 þ λα⊤Kα

= ky -Kαk2 2 þ λα⊤Kα

Therefore, the minimization problem is:

min
α

ky -Kαk2 2 þ λα⊤Kα

for which a solution is given by:

α⋆ = K þ λIð Þ-1 y

Figure 8 illustrates the prediction function of a kernel ridge
regression method with a radial basis function kernel. The predic-
tion function is non-linear as the kernel is non-linear.

14.2 Kernel Principal

Component Analysis

As mentioned in Subheading 13, principal component analysis
consists in finding the linear orthogonal subspace in the original
input space such that each principal component explains the most
variance. The optimal solution is given by the first eigenvectors of
X⊤ X with the corresponding eigenvalues being sorted in descend-
ing order.

With kernel principal component analysis, the objective is to
find the linear orthogonal subspace in the feature space such that
each principal component in the feature space explains the most
variance [26]. The solution is given by the first l eigenvectors
(αk)1≤k≤l of the K matrix with the corresponding eigenvalues
being sorted in descending order. The eigenvectors are normalized
in order to be unit vectors in the feature space.

Classic Machine Learning Methods 73

Training data

Projection with principal component analysis

Projection with kernel principal component analysis

Fig. 26 Illustration of kernel principal component analysis. Some non-linearly
separable training data is plotted (top). The projected training data using
principal component analysis remains non-linearly separable (middle). The
projected training data using kernel principal component analysis (with a
non-linear kernel) becomes linearly separable (bottom)

Finally, the projection of any input x in the original space on the
kth component can be computed as:

ϕðxÞ⊤ αk =
n

i =1

αkiKðx, xðiÞÞ

Figure 26 illustrates the projection of some non-linearly separable
classification data with principal component analysis and with ker-
nel principal component analysis with a non-linear kernel. The
projected input data becomes linearly separable using kernel prin-
cipal component analysis, whereas the projected input data using
(linear) principal component analysis remains non-linearly
separable.

74 Johann Faouzi and Olivier Colliot

15 Conclusion

In this chapter, we described the main classic machine learning
methods. Due to space constraints, the description of some of
them was brief. The reader who seeks more details can refer to
[5, 6]. All these approaches are implemented in the scikit-learn
Python library [27]. A common point of the approaches presented
in this chapter is that they use as input a set of given or pre-extracted
features. On the contrary, deep learning approaches often provide
an end-to-end learning setup within which the features are learned.
These techniques are covered in Chaps. 3–6.

Acknowledgements

The authors would like to thank Hicham Janati for his fruitful
remarks. The authors would like to acknowledge the extensive
documentation of the scikit-learn Python package, in particular its
user guide, for the relevant information and references provided.
We used the NumPy [28], matplotlib [29], and scikit-learn [27]
Python packages to generate all the figures. This work was sup-
ported by the French government under management of Agence
Nationale de la Recherche as part of the “Investissements d’avenir”
program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute)
and reference ANR-10-IAIHU-06 (Agence Nationale de la
Recherche-10-IA Institut Hospitalo-Universitaire-6), and by the
European Union H2020 program (grant number 826421, project
TVB-Cloud).

References

1. Goodfellow I, Bengio Y, Courville A (2016)
Deep learning. MIT Press, Cambridge,
MA. http://www.deeplearningbook.org

2. Murphy KP (2012) Machine learning: a prob-
abilistic perspective. The MIT Press,
Cambridge, MA

3. Bentley JL (1975) Multidimensional binary
search trees used for associative searching.
Commun ACM 18(9):509–517

4. Omohundro SM (1989) Five balltree con-
struction algorithms. Tech. rep., International
Computer Science Institute

5. Bishop CM (2006) Pattern recognition and
machine learning. Springer, Berlin

6. Hastie T, Tibshirani R, Friedman J (2009) The
elements of statistical learning: data mining,
inference, and prediction, 2nd edn. Springer
series in statistics. Springer, New York

7. Tikhonov AN, Arsenin VY, John F (1977)
Solutions of Ill posed problems. Wiley,
Washington, New York

8. Tibshirani R (1996) Regression shrinkage and
selection via the lasso. J R Stat Soc Series B
(Methodological) 58(1):267–288

9. Zou H, Hastie T (2005) Regularization and
variable selection via the elastic net. J R Stat
Soc Series B (Statistical Methodology) 67(2):
301–320

10. Vapnik VN, Lerner A (1963) Pattern recogni-
tion using generalized portrait method. Autom
Remote Control 24:774–780

11. Cortes C, Vapnik V (1995) Support-vector
networks. Mach Learn 20(3):273–297

12. Boser BE, Guyon IM, Vapnik VN (1992) A
training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual

https://doi.org/10.1007/978-1-0716-3195-9_3
https://doi.org/10.1007/978-1-0716-3195-9_6
http://www.deeplearningbook.org

Classic Machine Learning Methods 75

workshop on computational learning theory.
Association for Computing Machinery, Pitts-
burgh, Pennsylvania, USA, COLT ’92, pp
144–152

13. Aizerman MA, Braverman EA, Rozonoer L
(1964) Theoretical foundations of the poten-
tial function method in pattern recognition
learning. In: Automation and remote control,
25, pp 821–837

14. Schölkopf B, Herbrich R, Smola AJ (2001) A
generalized representer theorem. In: Compu-
tational learning theory. Springer, Berlin, pp
416–426

15. Aly M (2005) Survey on multiclass classifica-
tion methods

16. James G, Hastie T (1998) The error coding
method and PICTs. J Comput Graph Stat
7(3):377–387

17. Breiman L, Friedman J, Stone CJ, Olshen RA
(1984) Classification and regression trees. Tay-
lor & Francis, London

18. Breiman L (2001) Random forests. Mach
Learn 45(1):5–32

19. Geurts P, Ernst D, Wehenkel L (2006)
Extremely randomized trees. Mach Learn
63(1):3–42

20. Lloyd S (1982) Least squares quantization in
PCM. IEEE Trans Inform Theory 28(2):
129–137

21. Elkan C (2003) Using the triangle inequality to
accelerate k-means. In: Proceedings of the
twentieth international conference on interna-
tional conference on machine learning, pp
147–153

22. Arthur D, Vassilvitskii S (2007) k-means+ +:
the advantages of careful seeding. In: Proceed-
ings of the eighteenth annual ACM-SIAM
symposium on discrete algorithms, pp
1027–1035

23. Aggarwal CC, Hinneburg A, Keim DA (2001)
On the surprising behavior of distance metrics
in high dimensional space. In: International
conference on database theory. Springer, Ber-
lin, pp 420–434

24. Dempster AP, Laird NM, Rubin DB (1977)
Maximum likelihood from incomplete data via
the EM algorithm. J R Stat Soc Series B (Meth-
odological) 39(1):1–38

25. Jolliffe IT (2002) Principal component analy-
sis, 2nd edn. Springer, Berlin

26. Schölkopf B, Smola AJ, Müller KR (1999) Ker-
nel principal component analysis. In: Advances
in kernel methods: support vector learning,
MIT Press, Cambridge, MA, pp 327–352

27. Pedregosa F, Varoquaux G, Gramfort A,
Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V et al.
(2011) Scikit-learn: machine learning in
python. J Mach Learn Res 12:2825–2830

28. Harris CR, Millman KJ, van der Walt SJ,
Gommers R, Virtanen P, Cournapeau D,
Wieser E, Taylor J, Berg S, Smith NJ et al.
(2020) Array programming with numpy.
Nature 585(7825):357–362

29. Hunter JD (2007) Matplotlib: a 2d graphics
environment. Comput Sci Eng 9(03):90–95

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made. The images or other
third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Chapter 2: Classic Machine Learning Methods
	1 Introduction
	Box 1: Main Classic ML Methods
	2 Notations
	3 Nearest Neighbor Methods
	3.1 Metrics
	3.2 Neighborhood
	3.3 Weights
	3.4 Neighbor Search

	4 Linear Regression
	Box 2: Linear Regression
	5 Logistic Regression
	Box 3: Logistic Regression
	6 Overfitting and Regularization
	7 Penalized Models
	7.1 Penalties
	7.1.1 2 Penalty
	7.1.2 1 Penalty
	7.1.3 Elastic-Net Penalty

	7.2 New Optimization Problem

	8 Support Vector Machine
	Box 4: Support Vector Machine
	8.1 Original Formulation
	8.2 General Formulation with Kernels

	9 Multiclass Classification
	9.1 Multinomial Logistic Regression
	9.2 One-vs-Rest
	9.3 One-vs-One
	9.4 Error Correcting Output Code

	10 Decision Functions with Normal Distributions
	10.1 Naive Bayes
	10.2 Linear Discriminant Analysis
	10.3 Quadratic Discriminant Analysis

	11 Tree-Based Methods
	11.1 Decision Tree
	11.2 Random Forest
	Box 5: Random Forest
	11.3 Extremely Randomized Trees

	12 Clustering
	12.1 k-means
	12.2 Gaussian Mixture Model

	13 Dimensionality Reduction
	13.1 Principal Component Analysis
	13.1.1 Full Decomposition
	13.1.2 Truncated Decomposition

	13.2 Linear Discriminant Analysis

	14 Kernel Methods
	14.1 Kernel Ridge Regression
	14.2 Kernel Principal Component Analysis

	15 Conclusion
	References

