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Classic Machine Learning Methods 

Johann Faouzi and Olivier Colliot 

Abstract 

In this chapter, we present the main classic machine learning methods. A large part of the chapter is devoted 
to supervised learning techniques for classification and regression, including nearest neighbor methods, 
linear and logistic regressions, support vector machines, and tree-based algorithms. We also describe the 
problem of overfitting as well as strategies to overcome it. We finally provide a brief overview of unsuper-
vised learning methods, namely, for clustering and dimensionality reduction. The chapter does not cover 
neural networks and deep learning as these will be presented in Chaps. 3, 4, 5, and 6. 
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1 Introduction 

This chapter presents the main classic machine learning 
(ML) methods. There is a focus on supervised learning methods 
for classification and regression, but we also describe some unsu-
pervised approaches. The chapter is meant to be readable by some-
one with no background in machine learning. It is nevertheless 
necessary to have some basic notions of linear algebra, probabilities, 
and statistics. If this is not the case, we refer the reader to Chapters 
2 and 3 of [1]. 

The rest of this chapter is organized as follows. Rather than 
grouping methods by categories (for instance, classification or 
regression methods), we chose to present methods by increasing 
order of complexity. We first provide the notations in Subheading 
2. We then describe a very intuitive family of methods, that of 
nearest neighbors (Subheading 3). We continue with linear regres-
sion (Subheading 4) and logistic regression (Subheading 5), the 
latter being a classification technique. We subsequently introduce 
the problem of overfitting (Subheading 6) as well as strategies to 
mitigate it (Subheading 7). Subheading 8 describes support vector 
machines (SVM). Subheading 9 explains how binary classification 
methods can be extended to a multi-class setting. We then describe
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methods which are specifically adapted to the case of normal dis-
tributions (Subheading 10). Decision trees and random forests are 
described in Subheading 11. We then briefly describe some unsu-
pervised learning techniques, namely, for clustering (Subheading 
12) and dimensionality reduction (Subheading 13). The chapter 
ends with a description of kernel methods which can be used to 
extend linear techniques to non-linear cases (Subheading 14). 
Box 1 summarizes the methods presented in this chapter, grouped 
by categories and then sorted in order of appearance.
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Box 1: Main Classic ML Methods

• Supervised learning 

– Classification: nearest neighbors, logistic regression, sup-
port vector machine (SVM), naive Bayes, linear discrimi-
nant analysis (LDA), quadratic discriminant analysis, tree-
based models (decision tree, random forest, extremely 
randomized trees) 

– Regression: nearest neighbors, linear regression, support 
vector machine regression, tree-based models (decision 
tree, random forest, extremely randomized trees), kernel 
ridge regression

• Unsupervised learning 

– Clustering: k-means, Gaussian mixture model 

– Dimensionality reduction: principal component analysis 
(PCA), linear discriminant analysis (LDA), kernel principal 
component analysis 

2 Notations 

Let n be the number of samples and p be the number of features. An 
input sample is thus a p-dimensional vector: 

x = 

x1 

⋮ 

xp 

An output sample is denoted by y. Thus, a sample is (x, y). The 
dataset of n samples can then be summarized as an n× p matrix X 
representing the input data and an n-dimensional vector y repre-
senting the target data:
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X = 

xð1Þ 

⋮ 

xðnÞ 
= 

x
ð1Þ 
1 . . .  x

ð1Þ 
p 

⋮ ⋱  ⋮  

x
ðnÞ 
1 . . .  x

ðnÞ 
p 

, y = 

y1 

⋮ 

yn 

The input space is denoted by I, and the set of training samples is 
denoted by X. 

In the case of regression, y is a real number. In the case of 
classification, y is a single label. More precisely, y can only take one 
of a finite set of values called labels. The set of possible classes (i.e., 
labels) is denoted by C = fC 1, . . ., C qg, with q being the number of 
classes. As the values of the classes are not meaningful, when there 
are only two classes, the classes are often called the positive and 
negative classes. In this case and also for mathematical reasons, 
without loss of generality, we assume the values of the classes to 
be + 1 and -1. 

3 Nearest Neighbor Methods 

One of the most intuitive approaches to machine learning is nearest 
neighbors. It is based on the following intuition: for a given input, 
its corresponding output is likely to be similar to the outputs of 
similar inputs. A real-life metaphor would be that if a subject has 
similar characteristics than other subjects who were diagnosed with 
a given disease, then this subject is likely to also be suffering from 
this disease. 

More formally, nearest neighbor methods use the training 
samples from the neighborhood of a given point x, denoted by 
N(x), to perform prediction [2]. 

For regression tasks, the prediction is computed as a weighted 
mean of the target values in N(x): 

ŷ = 
xðiÞ∈N ðxÞ 

w
ðxÞ 
i yðiÞ 

where w
ðxÞ 
i is the weight associated with x(i) to predict the output of 

x, with w
ðxÞ 
i ≥0 8i and iw

ðxÞ 
i =1. 

For classification tasks, the predicted label corresponds to the 
label with the largest weighted sum of occurrences of each label: 

ŷ = arg max 
C xðiÞ∈N ðxÞ 

w
ðxÞ 
i 1yðiÞ = C k 

A key parameter of nearest neighbor methods is the metric, 
denoted by d, that is, a mathematical function that defines dissimi-
larity. The metric is used to define the neighborhood of any point 
and can also be used to compute the weights.
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3.1 Metrics Many metrics have been defined for various types of input data such 
as vectors of real numbers, integers, or booleans. Among these 
different types, vectors of real numbers are one of the most com-
mon types of input data, for which the most commonly used metric 
is the Euclidean distance, defined as: 

8x, x ′∈ I , kx - x ′ k2 = 
p 

j =1 

ðxj - x 0 j Þ2 

The Euclidean distance is sometimes referred to as the “ordinary” 
distance since it is the one based on the Pythagorean theorem and 
that everyone uses in their everyday lives. 

3.2 Neighborhood The two most common definitions of the neighborhood rely on 
either the number of neighbors or the radius around the given 
point. Figure 1 illustrates the differences between both definitions. 

The k-nearest neighbor method defines the neighborhood of a 
given point x as the set of the k closest points to x: 

N ðxÞ= fxðiÞgk i =1 with dðx, xð1ÞÞ≤ . . .  ≤ dðx, xðnÞÞ 
The radius neighbor method defines the neighborhood of a 

given point x as the set of points whose dissimilarity to x is smaller 
than the given radius, denoted by r: 

N ðxÞ= fxðiÞ∈X j dðx, xðiÞÞ< rg 
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0.00 
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0.75 
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k-nearest neighbors (k = 5)  

0.0 0.5 1.0 

Radius neighbors (r = 0.2) 

Fig. 1 Different definitions of the neighborhood. On the left, the neighborhood of 
a given point is the set of its five nearest neighbors. On the right, the neighbor-
hood of a given point is the set of points whose dissimilarity is lower than the 
radius. For a given input, its neighborhood may be different depending on the 
definition used. The Euclidean distance is used as the metric in both examples



that is, if the metric d satisfies the following properties:
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3.3 Weights The two most common approaches to compute the weights are 
to use:

• Uniform weights (all the weights are equal):

8i, wðxÞ 
i = 

1 
jN ðxÞj 

• Weights inversely proportional to the dissimilarity: 

8i, wðxÞ 
i = 

1 

dðxðiÞ, xÞ 
j 

1 

dðxðjÞ, xÞ 
= 

1 

dðxðiÞ, xÞ j 
1 

dðxðjÞ, xÞ 

With uniform weights, every point in the neighborhood equally 
contributes to the prediction. With weights inversely proportional 
to the dissimilarity, closer points contribute more to the prediction 
than further points. Figure 2 illustrates the different decision func-
tions obtained with uniform weights and weights inversely propor-
tional to the dissimilarity for a 3-nearest neighbor classification 
model. 

3.4 Neighbor Search The brute-force method to compute the neighborhood for 
n points with p features is to compute the metric for each pair of 
inputs, which has a Oðn2 pÞ algorithmic complexity (assuming that 
evaluating the metric for a pair of inputs has a complexity of OðpÞ, 
which is the case for most metrics). However, it is possible to 
decrease this algorithmic complexity if the metric is a distance, 

1. Non-negativity: 8a, b, d(a, b)≥0 

2. Identity: 8a, b, d(a, b)=0 if and only if a= b

Training samples Uniform weights 
Weights inversely proportional 

to the dissimilarity 

Fig. 2 Impact of the definition of the weights on the prediction function of a 
3-nearest neighbor classification model. When the weights are inversely propor-
tional to the dissimilarity, the classifier is more subject to outliers since the 
predictions in the close neighborhood of any input are mostly dedicated by the 
label of this input, independently of the number of neighbors used. With uniform 
weights, the prediction function tends to be smoother
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3. Symmetry: 8a, b, d(a, b)= d(b, a) 

4. Triangle inequality: 8a, b, c, d(a, b) + d(b, c)≥ d(a, c)

The key property is the triangle inequality, which has a simple 
interpretation: the shortest path between two points is a straight 
line. Mathematically, if a is far from c and c is close to b (i.e., d(a, c) 
is large and d(b, c) is small), then a is far from b (i.e., d(a, b) i  
large). This is obtained by rewriting the triangle inequality as 
follows: 

8a, b, c, dða, bÞ≥ dða, cÞ- dðb, cÞ 
This means that it is not necessary to compute d(a, b) in this case. 
Therefore, the computational cost of a nearest neighbor search can 
be reduced to OðnlogðnÞpÞ or better, which is a substantial 
improvement over the brute-force method for large n. Two popu-
lar methods that take advantage of this property are the K-dimen-
sional tree structure [3] and the ball tree structure [4]. 

4 Linear Regression 

Linear regression is a regression model that linearly combines the 
features. Each feature is associated with a coefficient that represents 
the relative weight of this feature compared to the other features. A 
real-life metaphor would be to see the coefficients as the ingredients 
of a recipe: the key is to find the best balance (i.e., proportions) 
between all the ingredients in order to make the best cake. 

Mathematically, a linear model is a model that linearly com-
bines the features [5]: 

f ðxÞ=w0 þ 
p 

j =1 

wjxj 

A common notation consists in including a 1 in x so that f(x) can be 
written as the dot product between the vector x and the vector w: 

f ðxÞ=w0 ×1þ 
p 

j =1 

wjxj = x⊤w 

where the vector w consists of:

• The intercept (also known as bias) w0

• The coefficients (w1, . . ., wp), where each coefficient wj is asso-
ciated with the corresponding feature xj 

In the case of linear regression, f(x) is the predicted output: 

ŷ = f ðxÞ= x⊤w
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Fig. 3 Ordinary least squares regression. The coefficients (i.e., the intercept and 
the slope with a single predictor) are estimated by minimizing the sum of the 
squared errors 

There are several methods to estimate the w coefficients. In this 
section, we present the oldest one which is known as ordinary least 
squares regression. 

In the case of ordinary least squares regression, the cost func-
tion J is the sum of the squared errors on the training data (see 
Fig. 3): 

J ðwÞ= 
n 

i =1 

yðiÞ - ŷðiÞ 
2 
= 

n 

i =1 

yðiÞ - xðiÞ⊤w 
2 
= ky -Xwk2 2 

One wants to find the optimal parameters w⋆ that minimize the 
cost function: 

w⋆ = arg min 
w 

J ðwÞ 

This optimization problem is convex, implying that any local mini-
mum is a global minimum, and differentiable, implying that every 
local minimum has a null gradient. One therefore aims to find null 
gradients of the cost function: 

∇w⋆J =0 

) 2X⊤ Xw⋆ -2X⊤ y =0 

) X⊤ Xw⋆ =X⊤ y 

) w⋆ = X⊤ Xð Þ-1 
X⊤ y 

Ordinary least squares regression is one of the few machine 
learning optimization problems for which there exists a closed for-
mula, i.e., the optimal solution can be computed using a finite 
number of standard operations such as addition, multiplication,



and evaluations of well-known functions. A summary of linear 
regression can be found in Box 2. 
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Box 2: Linear Regression

• Main idea: best hyperplane (i.e., line when p= 1, plane when 
p= 2) mapping the inputs and to the outputs.

• Mathematical formulation: linear relationship between the 
predicted output ŷ and the input x that minimizes the sum of 
squared errors:

ŷ =w⋆ 
0 þ 

n 

j =1 

w⋆ 
j xj with w⋆ = arg min 

w 

n 

i =1 

yðiÞ - xðiÞ⊤w 
2 

• Regularization: can be penalized to avoid overfitting (ridge), 
to perform feature selection (lasso), or both (elastic-net). See 
Subheading 7. 

5 Logistic Regression 

Intuitively, linear regression consists in finding the line that best fits 
the data: the true output should be as close to the line as possible. 
For binary classification, one wants the line to separate both classes 
as well as possible: the samples from one class should all be in one 
subspace, and the samples from the other class should all be in the 
other subspace, with the inputs being as far as possible from 
the line. 

Mathematically, for binary classification tasks, a linear model is 
defined by a hyperplane splitting the input space into two subspaces 
such that each subspace is characteristic of one class. For instance, a 
line splits a plane into two subspaces in the two-dimensional case, 
while a plane splits a three-dimensional space into two subspaces. A 
hyperplane is defined by a vector w= (w0, w1, . . ., wp), and f(x)= 
x⊤ w corresponds to the signed distance between the input x and the 
hyperplane w: in one subspace, the distance with any input is always 
positive, whereas in the other subspace, the distance with any input 
is always negative. Figure 4 illustrates the decision function in the 
two-dimensional case where both classes are linearly separable. 

The sign of the signed distance corresponds to the decision 
function of a linear binary classification model: 

ŷ = signðf ðxÞÞ= 
þ1 if  f ðxÞ>0

-1 if  f ðxÞ<0
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Fig. 4 Decision function of a logistic regression model. A logistic regression is a 
linear model, that is, its decision function is linear. In the two-dimensional case, 
it separates a plane with a line 

The logistic regression model is a probabilistic linear model 
that transforms the signed distance to the hyperplane into a proba-
bility using the sigmoid function [6], denoted by σðuÞ= 1 

1þ exp -uð  . 
Consider the linear model: 

f ðxÞ= x⊤w =w0 þ 
p 

i = j 

wj xj 

Then the probability of belonging to the positive class is: 

P y= þ 1jx= xð Þ= σðf ðxÞÞ= 
1 

1þ exp - f ðxÞð Þ  
and that of belonging to the negative class is: 

P y= -1jx= xð Þ  =1-P y= þ 1jx= xð Þ  
= 

exp - f ðxÞð Þ  
1þ exp - f ðxÞð Þ  

= 
1 

1þ exp f ðxÞð  Þ  
P y= -1jx= xð Þ  = σð- f ðxÞÞ 

By applying the inverse of the sigmoid function, which is 
known as the logit function, one can see that the logarithm of the 
odds ratio is modeled as a linear combination of the features: 

log 
P y= þ 1jx= xð Þ  
P y= -1jx= xð Þ  = log 

P y= þ 1jx= xð Þ  
1-P y= þ 1jx= xð = f ðxÞ



(continued)
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The w coefficients are estimated by maximizing the likelihood 
function, that is, the function measuring the goodness of fit of the 
model to the training data: 

LðwÞ= ∏ 
n 

i =1 
P y= yðiÞjx= xðiÞ;w 

For computational reasons, it is easier to maximize the log-likeli-
hood, which is simply the logarithm of the likelihood: 

logðLðwÞÞ = 
n 

i =1 

log P y= yðiÞjx= xðiÞ;w 

= 
n 

i =1 

log σ yðiÞf ðxðiÞ;wÞ 

= 
n 

i =1

- log 1þ exp yðiÞxðiÞ⊤w 

logðLðwÞÞ = -
n 

i =1 

log 1þ exp yðiÞxðiÞ⊤w 

Finally, we can rewrite this maximization problem as a minimiza-
tion problem by noticing that 
max w logðLðwÞÞ= - min w - log ðLðwÞÞ: 

max
w 

logðLðwÞÞ= - min
w 

n 

i =1 

log 1þ exp yðiÞxðiÞ⊤w 

We can see that the w coefficients that maximize the likelihood are 
also the coefficients that minimize the sum of the logistic loss values, 
with the logistic loss being defined as: 

ℓlogisticðy, f ðxÞÞ= log 1þ exp yf ðxÞð Þð Þ= log ð2Þ 
Unlike for linear regression, there is no closed formula for this 
minimization. One thus needs to use an optimization method 
such as gradient descent which was presented in Subheading 3 of 
Chap. 1. In practice, more sophisticated approaches such as quasi-
Newton methods and variants of stochastic gradient descent are 
often used. The main concepts underlying logistic regression can be 
found in Box 3. 

Box 3: Logistic Regression

• Main idea: best hyperplane (i.e., line) that separates two 
classes.

• Mathematical formulation: the signed distance to the 
hyperplane is mapped into the probability to belong to the 
positive class using the sigmoid function:

https://doi.org/10.1007/978-1-0716-3195-9_1
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f ðxÞ=w0 þ 
j =1 

wjxj 

Pðy= þ 1jx= xÞ= σðf ðxÞÞ= 
1 

1þ expð- f ðxÞÞ 

Box 3 (continued)
n 

• Estimation: likelihood maximization.

• Regularization: can be penalized to avoid overfitting (ℓ2 
penalty), to perform feature selection (ℓ1 penalty), or both 
(elastic-net penalty). 

6 Overfitting and Regularization 

The original formulations of ordinary least squares regression and 
logistic regression are unregularized models, that is, the model is 
trained to fit the training data as much as possible. Let us consider a 
real-life example as it is very similar to human learning. If a person 
learns by heart the content of a book, they are able to solve the 
exercises in the book, but unable to apply the theoretical concepts 
to new exercises or real-life situations. If a person only quickly reads 
through the book, they are probably unable to solve neither the 
exercises in the book nor new exercises. 

The corresponding concepts are known as overfitting and 
underfitting in machine learning. Overfitting occurs when a 
model fits too well the training data and generalizes poorly to 
new data. Oppositely, underfitting occurs when a model does not 
capture well enough the characteristics of the training data and thus 
also generalizes poorly to new data. 

Overfitting and underfitting are related to frequently used 
terms in machine learning: bias and variance. Bias is defined as 
the expected (i.e., mean) difference between the true output and 
the predicted output. Variance is defined as the variability of the 
predicted output. For instance, let us consider a model predicting 
the age of a person from a picture. If the model always under-
estimates or overestimates the age, then the model is biased. If 
the model makes both large and small errors, then the model has a 
high variance. 

Ideally, one would like to have a model with a small bias and a 
small variance. However, the bias of a model tends to increase when 
decreasing its variance, and the variance of the model tends to 
increase when decreasing its bias. This phenomenon is known as 
the bias-variance trade-off. Figure 5 illustrates this phenomenon. 
One can also notice it by computing the squared error between the 
true output y (fixed) and the predicted output ŷ (random variable): 
its expected value is the sum of the squared bias of ŷ and the 
variance of ŷ:
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Fig. 5 Illustration of underfitting and overfitting. Underfitting occurs when a 
model is too simple and does not capture well enough the characteristics of 
the training data, leading to high bias and low variance. Oppositely, overfitting 
occurs when a model is too complex and learns the noise in the training data, 
leading to low bias and high variance
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 ðy - ŷÞ2 = y2 -2y ŷ þ ŷ2 

= y2 -2y ŷ½ � þ   ŷ2 
= y2 -2y ŷ½ � þ   ŷ2 þ  ŷ½ �2 - ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ2 - ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ2 - ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ2 -2 ŷ½ �2 þ  ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ2 -2ŷ ŷ½ � þ   ŷ½ �2 

=  ŷ½ �- yð Þ2 þ  ŷ- ŷ½ �ð Þ2 

 ðy - ŷÞ2 =  ŷ½ �- yð Þ2 

bias2 

þ Var ŷ½ �
variance 

7 Penalized Models 

Depending on the class of methods, there exist different strategies 
to tackle overfitting. 

For neighbor methods, the number of neighbors used to define 
the neighborhood of any input and the strategy to compute the 
weights are the key hyperparameters to control the bias-variance 
trade-off. For models that are presented in the remaining sections 
of this chapter, we mention strategies to address the bias-variance 
trade-off in their respective sections. In this section, we present the 
most commonly used strategies for models whose parameters are 
optimized by minimizing a cost function defined as the mean loss 
values over all the training samples: 

min
w 

J ðwÞ with J ðwÞ= 
1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞ;wÞ 

This is, for instance, the case of the linear and logistic regression 
methods presented in the previous sections. 

7.1 Penalties The main idea is to introduce a penalty term Pen(w) that will 
constraint the parameters w to have some desired properties. The 
most common penalties are the ℓ2 penalty, the ℓ1 penalty, and the 
elastic-net penalty. 

7.1.1 ℓ2 Penalty The ℓ2 penalty is defined as the squared ℓ2 norm of the 
w coefficients:
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ℓ2ðwÞ= kwk2 2 = 
p 

j =1 

w2 
j 

The ℓ2 penalty forces each coefficient wi not to be too large and 
makes the coefficients more robust to collinearity (i.e., when some 
features are approximately linear combinations of the other 
features). 

7.1.2 ℓ1 Penalty The ℓ2 penalty forces the values of the parameters not to be too 
large, but does not incentivize to make small values tend to zero. 
Indeed, the square of a small value is even smaller. When the 
number of features is large, or when interpretability is important, 
it can be useful to make the model select the most important 
features. The corresponding metric is the ℓ0 “norm” (which is not 
a proper norm in the mathematical sense), defined as the number of 
nonzero elements: 

ℓ0ðwÞ= kwk0 = 
p 

j =1 

1wj ≠0 

However, the ℓ0 “norm” is neither differentiable nor convex (which 
are useful properties to solve an optimization problem, but this is 
not further detailed for the sake of conciseness). The best convex 
differentiable approximation of the ℓ0 “norm” is the ℓ1 norm (see 
Fig. 6), defined as the sum of the absolute values of each element: 

ℓ1ðwÞ= kwk1 = 
p 

j =1 

jwj j 

7.1.3 Elastic-Net Penalty Both the ℓ2 and ℓ1 penalties have their upsides and downsides. In 
order to try to obtain the best of penalties, one can add both 
penalties in the objective function. The combination of both penal-
ties is known as the elastic-net penalty: 

ENðw, αÞ= αkwk1 þ ð1- αÞkwk2 2 
where α∈ [0, 1] is a hyperparameter representing the proportion of 
the ℓ1 penalty compared to the ℓ2 penalty. 

7.2 New 

Optimization Problem 

A natural approach would be to add a constraint to the minimiza-
tion problem: 

min
w 

J ðwÞ subject to PenðwÞ< c ð1Þ 
which reads as “Find the optimal parameters that minimize the cost 
function J among all the parameters w that satisfy Pen(w)< c” for a 
positive real number c. Figure 7 illustrates the optimal solution of a 
simple linear regression task with different constraints. This figure
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�2 

Fig. 6 Unit balls of the ℓ0, ℓ1, and ℓ2 norms. For each norm, the set of points in 
2 whose norm is equal to 1 is plotted. The ℓ1 norm is the best convex 
approximation to the ℓ0 norm. Note that the lines for the ℓ0 norm extend to
-1 and +1 but are cut for plotting reasons 

also highlights the sparsity property of the ℓ1 penalty (the optimal 
parameter for the horizontal axis is set to zero) that the ℓ2 penalty 
does not have (the optimal parameter for the horizontal axis is small 
but different from zero). 

Although this approach is appealing due to its intuitiveness and 
the possibility to set the maximum possible penalty on the para-
meters w, it leads to a minimization problem that is not trivial to 
solve. A similar approach consists in adding the regularization term 
in the cost function: 

min
w 

J ðwÞ þ  λ×PenðwÞ ð2Þ 
where λ>0 is a hyperparameter that controls the weights of the 
penalty term compared to the mean loss values over all the training 
samples. This formulation is related to the Lagrangian function of 
the minimization problem with the penalty constraint. 

This formulation leads to a minimization problem with no 
constraint which is much easier to solve. One can actually show 
that Eqs. 1 and 2 are related: solving Eq. 2 for a given λ, whose 
optimal solution is denoted by w⋆ 

λ , is equivalent to solving Eq. 1 for 
c =Penðw⋆ 

λ Þ. In other words, solving Eq. 2 for a given λ is equiva-
lent to solving Eq. 1 for c whose value is only known after finding 
the optimal solution of Eq. 2. 

Figure 8 illustrates the impact of the regularization term λ×Pen 
(w) on the prediction function of a kernel ridge regression algo-
rithm (see Subheading 14 for more details) for different values of λ. 
For high values of λ, the regularization term is dominating the 
mean loss value, making the prediction function not fitting well 
enough the training data (underfitting). For small values of λ, the



mean loss value is dominating the regularization term, making the 
prediction function fitting too well the training data (overfitting). A 
good balance between the mean loss value and the regularization 
term is required to learn the best function. 
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Fig. 7 Illustration of the minimization problem with a constraint on the penalty 
term. The plot represents the value of the loss function for different values of the 
two coefficients for a linear regression task. The black star indicates the optimal 
solution with no constraint. The green and orange stars indicate the optimal 
solutions when imposing a constraint on the ℓ2 and ℓ1 norms of the parameters 
w, respectively 

Since linear regression is one of the oldest and best-known 
models, the aforementioned penalties were originally introduced 
for linear regression:

• Linear regression with the ℓ2 penalty is also known as ridge [7]:

min
w 

ky -Xwk2 2 þ λkwk2 2
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λ = 1000 λ = 100 

λ = 10 λ = 1  

λ = 0.1 λ = 0.01 

λ = 0.001 λ = 0.0001 

λ = 0.00001 λ = 0.000001 

λ = 0.0000001 λ = 0.00000001 

Fig. 8 Illustration of regularization. A kernel ridge regression algorithm is fitted 
on the training data (blue points) with different values of λ, which is the weight of 
the regularization in the cost function. The smaller the values of λ, the smaller 
the weight of the ℓ2 regularization. The algorithm underfits (respectively, overfits) 
the data when the value of λ is too large (respectively, low)
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As in ordinary least squares regression, there exists a closed formula 
for the optimal solution:

w⋆ = X⊤ X þ λIð Þ-1 
X⊤ y 

• Linear regression with the ℓ1 penalty is also known as lasso [8]:

min
w 

ky -Xwk2 2 þ λkwk1 
• Linear regression with the elastic-net penalty is also known as 

elastic-net [9]:

min
w 

ky -Xwk2 2 þ λαkwk1 þ λð1- αÞkwk2 2 

The penalties can also be added in other models such as logistic 
regression, support vector machines, artificial neural networks, etc. 

8 Support Vector Machine 

Linear and logistic regression take into account every training 
sample in order to find the best line, which is due to their 
corresponding loss functions: the squared error is zero only if the 
true and predicted outputs are equal, and the logistic loss is always 
positive. One could argue that the training samples whose outputs 
are “easily” well predicted are not relevant: only the training sam-
ples whose outputs are not “easily” well predicted or are wrongly 
predicted should be taken into account. The support vector 
machine (SVM) is based on this principle (please see Box 4 for an 
overview of the SVM). 

Box 4: Support Vector Machine

• Main idea: hyperplane (i.e., line) that maximizes the margin 
(i.e., the distance between the hyperplane and the closest 
inputs to the hyperplane).

• Support vectors: only the misclassified inputs and the inputs 
well classified but with low confidence are taken into account.

• Non-linearity: decision function can be non-linear with the 
use of non-linear kernels.

• Regularization: ℓ2 penalty. 

8.1 Original 

Formulation 

The original support vector machine was invented in 1963 and was 
a linear binary classification method [10]. Figure 9 illustrates the 
main concept of its original version. When both classes are linearly



separable, there exist an infinite number of hyperplanes that sepa-
rate both classes. The SVM finds the hyperplane that maximizes the 
margin, that is, the distance between the hyperplane and the closest 
points of both classes to the hyperplane, while linearly separating 
both classes. 
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Fig. 9 Support vector machine classifier with linearly separable classes. When 
two classes are linearly separable, there exist an infinite number of hyperplanes 
separating them (left). The decision function of the support vector machine 
classifier is the hyperplane that maximizes the margin, that is, the distance 
between the hyperplane and the closest points to the hyperplane (right). Support 
vectors are highlighted with a black circle surrounding them 

The SVM was later updated to non-separable classes [11]. Fig-
ure 10 illustrates the role of the margin in this case. The dashed 
lines correspond to the hyperplanes defined by the equations 
x⊤ w=+1 and x⊤ w=-1. The margin is the distance between 
both hyperplanes and is equal to 2=kwk2 2. It defines which samples 
are included in the decision function of the model: a sample is 
included if and only if it is inside the margin or outside the margin 
and misclassified. Such samples are called support vectors and are 
illustrated in Fig. 10 with a black circle surrounding them. In this 
case, the margin can be seen a regularization term: the larger the 
margin is, the more support vectors are included in the decision 
function, the more regularized the model is. 

The loss function for the SVM is called the hinge loss and is 
defined as: 

ℓhingeðy, f ðxÞÞ= max ð0, 1- yf ðxÞÞ 
Figure 11 illustrates the curves of the logistic and hinge losses. The 
logistic loss is always positive, even when the point is accurately 
classified with high confidence (i.e., when yf(x)≫0), whereas the 
hinge loss is equal to zero when the point is accurately classified 
with good confidence (i.e., when yf(x)≥1). One can see that a 
sample (x, y) is a support vector if and only if yf(x)≥1, that is, if 
and only if ℓhinge(y, f(x))=0.
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Fig. 10 Decision function of a support vector machine classifier with a linear 
kernel when both classes are not strictly linearly separable. The support vectors 
are the training points within the margin of the decision function and the 
misclassified training points. The support vectors are highlighted with a black 
circle surrounding them 
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Logistic loss: �logistic(y, f(x)) = log(1 + exp(yf(x)))/ log(2) 

Hinge loss: �hinge(y, f(x)) = max(0, 1 − yf(x)) 

Fig. 11 Binary classification losses. The logistic loss is always positive, even 
when the point is accurately classified with high confidence (i.e., when 
yf(x)≫ 0), whereas the hinge loss is equal to zero when the point is accurately 
classified with good confidence (i.e., when yf(x)≥ 1)
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The optimal w coefficients for the original version are estimated 
by minimizing an objective function consisting of the sum of the 
hinge loss values and a ℓ2 penalty term (which is inversely propor-
tional to the margin): 

min
w 

n 

i =1 

maxð0, 1- yðiÞxðiÞ⊤wÞ þ  1 
2C

kwk2 2 

8.2 General 

Formulation with 

Kernels 

The SVM was later updated to non-linear decision functions with 
the use of kernels [12]. 

In order to have a non-linear decision function, one could map 
the input space I into another space (often called the feature space), 
denoted by G, using a function denoted by ϕ: 

ϕ : I → G 

x ↦ϕðxÞ 
The decision function would still be linear (with a dot product), but 
in the feature space: 

f ðxÞ=ϕðxÞ⊤ w 

Unfortunately, solving the corresponding minimization problem is 
not trivial: 

min
w 

n 

i =1 

max 0, 1- yðiÞϕðxðiÞÞ⊤ 
w þ 1 

2C
kwk2 2 ð3Þ 

Nonetheless, two mathematical properties make the use of 
non-linear transformations in the feature space possible: the kernel 
trick and the representer theorem. 

The kernel trick asserts that the dot product in the feature space 
can be computed using only the points from the input space and a 
kernel function, denoted by K: 

8x, x ′∈ I , ϕðxÞ⊤ ϕðx ′ Þ=K ðx, x ′ Þ 
The representer theorem [13, 14] asserts that, under certain 

conditions on the kernel K and the feature space G associated with 
the function ϕ, any minimizer of Eq. 3 admits the following form: 

f = 
n 

i =1 

αiKð�, xðiÞÞ 

where α solves: 

min
α 

n 

i =1 

maxð0, 1- yðiÞ½Kα�iÞ þ  1 
2C 

α⊤ Kα



s

46 Johann Faouzi and Olivier Colliot

where K is the n×n matrix consisting of the evaluations of the 
kernel on all the pairs of training samples: 8i, j∈{1, . . ., n}, 
Kij=K(x(i) , x( j) ). 

Because the hinge loss is equal to zero if and only if yf(x) i  
greater than or equal to 1, only the training samples (x(i) , y(i) ) such 
that y(i) f(x(i) )<1 have a nonzero αi coefficient. These points are the 
so-called support vectors, and this is why they are the only training 
samples contributing to the decision function of the model: 

SV = fi∈f1, . . . ,ng j  αi ≠0g 

f ðxÞ= 
n 

i =1 

αiK ðx, xðiÞÞ= 
i∈SV 

αiKðx, xðiÞÞ 

The kernel trick and the representer theorem show that it is 
more practical to work with the kernel K instead of the mapping 
function ϕ. Popular kernel functions include:

• The linear kernel:

K ðx, x ′ Þ= x⊤x ′ 

• The polynomial kernel:

Kðx, x 0Þ= ðγ x⊤ x 0 þ c0Þd with γ >0, c0 ≥0, d∈�

• The sigmoid kernel:

Kðx, x ′ Þ= tanh γ x⊤x ′ þ c0ð Þ  with γ >0, c0 ≥0 

• The radial basis function (RBF) kernel: 

Kðx, x ′ Þ= exp - γ kx - x ′ k2 2 with γ >0 

The linear kernel yields a linear decision function and is actually 
identical to the original formulation of the SVM (one can show that 
there is a mapping between the α and w coefficients). Non-linear 
kernels allow for non-linear, more complex, decision functions. 
This is particularly useful when the data is not linearly separable, 
which is the most common use case. Figure 12 illustrates the 
decision function and the margin of a SVM classification model 
for four different kernels. 

The SVM was also extended to regression tasks with the use of 
the ε-insensitive loss. Similar to the hinge loss, which is equal to zero 
for points that are correctly classified and outside the margin, the ε-
insensitive loss is equal to zero when the error between the true 
target value and the predicted value is not greater than ε: 

ℓε- insensitiveðy, f ðxÞÞ= max ð0, jy - f ðxÞj- εÞ
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Linear kernel Polynomial kernel 

RBF kernel Sigmoid kernel 

Fig. 12 Impact of the kernel on the decision function of a support vector machine 
classifier. A non-linear kernel allows for a non-linear decision function 

The objective function for the SVM regression method combines 
the values of ε-insensitive loss of the training points and the 
ℓ2 penalty: 

min
w 

n 

i =1 

max 0, yðiÞ -ϕðxðiÞÞ⊤ 
w - ε þ 1 

2C
kwk2 2 

Figure 13 illustrates the curves of three regression losses. The 
squared error loss takes very small values for small errors and very 
high values for high errors, whereas the absolute error loss takes 
small values for small errors and high values for high errors. Both 
losses take small but nonzero values when the error is small. On the 
contrary, the ε-insensitive loss is null when the error is small and 
otherwise equal to the absolute error loss minus ε.
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Mean squared error (MSE): �MSE(y, ŷ) = (y − ŷ)2 
Mean absolute error (MAE): �MAE(y, ŷ) = |y − ŷ| 
ε-insensitive loss: �ε-insensitive(y, ŷ) = max(0, |y − ŷ| −  ε) 

Fig. 13 Regression losses. The squared error loss takes very small values for 
small errors and very large values for large errors, whereas the absolute error 
loss takes small values for small errors and large values for large errors. Both 
losses take small but nonzero values when the error is small. On the contrary, 
the ε-insensitive loss is null when the error is small and otherwise equal the 
absolute error loss minus ε. When computed over several samples, the squared 
and absolute error losses are often referred to as mean squared error (MSE) and 
mean absolute error (MAE), respectively 

9 Multiclass Classification 

The classification methods that we presented so far, logistic regres-
sion and support vector machines, are binary classifiers: they can 
only be used when there are only two possible outcomes. However, 
in practice, it is common to have more than two possible outcomes. 
For instance, differential diagnosis of brain disorders is often 
between several, and not only two, diseases. 

Several strategies have been proposed to extend any binary 
classification method to multiclass classification tasks. They all rely 
on transforming the multiclass classification task into several binary 
classification tasks. In this section, we present the most commonly 
used strategies: one-vs-rest, one-vs-one, and error correcting output 
code [15]. Figure 14 illustrates the main ideas of these approaches. 
But first, we present a natural extension of logistic regression to 
multiclass classification tasks which is often referred to as multino-
mial logistic regression [5].
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One-vs-rest 

{1} vs. {2, 3, 4, 5} 

{2} vs. {1, 3, 4, 5} 

{3} vs. {1, 2, 4, 5} 

{4} vs. {1, 2, 3, 5} 

{5} vs. {1, 2, 3, 4} 

One-vs-one 

{1} vs. {2} 

{1} vs. {3} 

{1} vs. {4} 

{1} vs. {5} 

{2} vs. {3} 

{2} vs. {4} 

{2} vs. {5} 

{3} vs. {4} 

{3} vs. {5} 

{4} vs. {5} 

Output code 

{1, 3} vs. {2, 4, 5} 

{1, 4, 5} vs. {2, 3} 

{2} vs. {1, 3, 4, 5} 

{1, 2, 3} vs. {4, 5} 

{2, 5} vs. {1, 3, 4} 

{2, 3, 4} vs. {1, 5} 

{4} vs. {1, 2, 3, 5} 
... 

... 
... 

Fig. 14 Main approaches to convert a multiclass classification task into several 
binary classification tasks. In the one-vs-rest approach, each class is associated 
with a binary classification model that is trained to separate this class from all 
the other classes. In the one-vs-one approach, a binary classifier is trained on 
each pair of classes. In the error correcting output code approach, the classes 
are (randomly) split into two groups, and a binary classifier is trained for each 
split 

9.1 Multinomial 

Logistic Regression 

For binary classification, logistic regression is characterized by a 
hyperplane: the signed distance to the hyperplane is mapped into 
the probability of belonging to the positive class using the sigmoid 
function. However, for multiclass classification, a single hyperplane 
is not enough to characterize all the classes. Instead, each class C k is 
characterized by a hyperplane wk, and, for any input x, one can 
compute the signed distance x⊤ wk between the input x and the 
hyperplane wk. The signed distances are mapped into probabilities 
using the softmax function, defined as 

softmax x1, . . ., xq =
exp x1ð Þ
q 

j = 1 
exp xjð Þ , . . ., 

exp xqð Þ
q 

j =1 
exp xjð Þ  , as follows: 

8k∈f1, . . ., qg, Pðy= C kjx= xÞ= 
exp x⊤wkð Þ

q 
j =1 exp x

⊤wj 

The coefficients (wk)1≤k≤q are still estimated by maximizing the 
likelihood function: 

Lðw1, . . .,wqÞ= ∏ 
n 

i =1 
∏ 
q 

k=1 
P y= C kjx= xðiÞ 1yðiÞ = Ck 

which is equivalent to minimizing the negative log-likelihood:
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- log ðLðw1, . . .,wqÞÞ 

= -
n 

i =1 

q 

k=1 

1yðiÞ = C k 
log P y= C kjx= xðiÞ 

= 
n 

i =1

-
q 

k=1 

1yðiÞ = C k 
log 

exp xðiÞ⊤ wk 
q 

j =1 
exp xðiÞ⊤wjð Þ  

= 
n 

i =1 

ℓcross�entropy y
ðiÞ, softmax xðiÞ⊤w1, . . ., x

ðiÞ⊤wq 

where ℓcross entropy is known as the cross-entropy loss and is defined, 
for any label y and any vector of probabilities (π1, . . ., πq), as: 

ℓcross- entropyðy, ðπ1, . . . , πqÞÞ= -
q 

k=1 

1y = C k 
logπk 

This loss is commonly used to train artificial neural networks on 
classification tasks and is equivalent to the logistic loss in the 
binary case. 

Figure 15 illustrates the impact of the strategy used to handle a 
multiclass classification task on the decision function. 

9.2 One-vs-Rest A strategy to transform a multiclass classification task into several 
binary classification tasks is to fit a binary classifier for each class: the 
positive class is the given class, and the negative class consists of all 
the other classes merged into a single class. This strategy is known 
as one-vs-rest. The advantage of this strategy is that each class is 
characterized by a single model, so that it is possible to gain deeper 
knowledge about the class by inspecting its corresponding model. 
A consequence is that the predictions for new samples take into 
account the confidence of the models: the predicted class for a new 
input is the class for which the corresponding model is the most 
confident that this input belongs to its class. The one-vs-rest strat-
egy is the most commonly used strategy and usually a good default 
choice. 

9.3 One-vs-One Another strategy is to fit a binary classifier for each pair of classes: 
this strategy is known as one-vs-one. The advantage of this strategy is 
that the classes in each binary classification task are “pure”, in the 
sense that different classes are never merged into a single class. 
However, the number of binary classifiers that needs to be trained 
is larger for the one-vs-one strategy (1 2 qðq-1Þ) than for the one-
vs-rest strategy (q). Nonetheless, for the one-vs-one strategy, the 
number of training samples in each binary classification task is 
smaller than the total number of samples, which makes training 
each binary classifier usually faster. Another drawback is that this 
strategy is less interpretable compared to the one-vs-rest strategy, as 
the predicted class corresponds to the class obtaining the most



votes (i.e., winning the most one-vs-one matchups), which does 
not take into account the confidence in winning each matchup.1 

For instance, winning a one-vs-one matchup with 0.99 probability 
gives the same result as winning the same matchup with 0.51 
probability, i.e., one vote. 
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Multinomial One-vs.-rest 

One-vs.-one Output code 

Fig. 15 Illustration of the impact of the strategy used to handle a multiclass 
classification task on the decision function of a logistic regression model 

9.4 Error Correcting 

Output Code 

A substantially different strategy, inspired by the theory of error 
correction code, consists in merging a subset of classes into one 
class and the other subset into the other class, for each binary 
classification task. This data is often called the code book and can 
be represented as a matrix whose rows correspond to the classes and 
whose columns correspond to the binary classification tasks. The 
matrix consists only of -1 and + 1 values that represent the 
corresponding label for each class and for each binary task.2 For

1 The confidences are actually taken into account but only in the event of a tie. 
2 The values are 0 and 1 when the classifier does not return scores but only probabilities. 



any input, each binary classifier returns the score (or probability) 
associated with the positive class. The predicted class for this input 
is the class whose corresponding vector is the most similar to the 
vector of scores, with similarity being assessed with the Euclidean 
distance (the lower, the more similar). There exist advanced strate-
gies to define the code book, but it has been argued than a random 
code book usually gives as good results as a sophisticated one [16]. 
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10 Decision Functions with Normal Distributions 

Normal distributions are popular distributions because they are 
commonly found in nature. For instance, the distribution of 
heights and birth weights of human beings can be approximated 
using normal distributions. Moreover, normal distributions are 
particularly easy to work with from a mathematical point of view. 
For these reasons, a common model consists in assuming that the 
training input vectors are independently sampled from normal 
distributions. 

A possible classification model consists in assuming that, for 
each class, all the corresponding inputs are sampled from a normal 
distribution with mean vector μk and covariance matrix Σk: 

8i such that yðiÞ = C k, x
ðiÞ � N ðμk,ΣkÞ 

Using the probability density function of a normal distribution, one 
can compute the probability density of any input x associated with 
the distribution N ðμk,ΣkÞ of class C k: 

pxjy= C k
ðxÞ= 

1 

ð2πÞpjΣkj 
exp -

1 
2
½x - μk�⊤ Σ-1 

k ½x - μk�

With such a probabilistic model, it is easy to compute the 
probability that a sample belongs to class C k using Bayes rule: 

Pðy= C kjx= xÞ= 
pxjy= C k

ðxÞPðy= C kÞ 
pxðxÞ 

With normal distributions, it is mathematically easier to work with 
log-probabilities:



Þ
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logPðy= C kjx= xÞ 
= log pxjy= C k

ðxÞþ logPðy= C kÞ- log pxðxÞ 
= -

1 
2
½x - μk�⊤ Σ-1 

k ½x - μk�- 1 
2 
logjΣkjþ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= -
1 
2 
x⊤Σ-1 

k x þ x⊤Σ-1 
k μk

-
1 
2 
μ⊤ 
k Σ

-1 
k μk -

1 
2 
logjΣkjþ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

ð4Þ 
It is also possible to make further assumptions on the covari-

ance matrices that lead to different models. In this section, we 
present the most commonly used ones: naive Bayes, linear discrimi-
nant analysis, and quadratic discriminant analysis. Figure 16 illus-
trates the covariance matrices and the decision functions for these 
models in the two-dimensional case. 

10.1 Naive Bayes The naive Bayes model assumes that, conditionally to each class C k, 
the features are independent and have the same variance σ2 k : 

8k, Σk = σ2 kI p 

Equation 4 can thus be further simplified: 

logPðy= C kjx= xÞ 
= -

1 

2σ2 k 
x⊤ x þ 1 

σ2 k 
x⊤ μk -

1 

2σ2 k 
μ⊤ 
k μk - log σk þ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= x⊤W kx þ x⊤wk þ w0k þ s 
w

•

here: 

W k = - 1 
2σ2 

I p is the matrix of the quadratic term for class C k.

•
k 

wk = 1 
σ2 
μk is the vector of the linear term for class C k.

•
k 

w0k = - 1 
2σ2 

k 

μ⊤ 
k μk - log σk þ logPðy= C kÞ is the intercept for 

class C k.

• s = - p 
2 logð2πÞ- log pxðxÞ is a term that does not depend on 

class C k. 

Therefore, naive Bayes is a quadratic model. The probabilities for 
input x to belong to each class C k can then easily be computed: 

Pðy= C kjx= xÞ= 
exp x⊤W kx þ x⊤wk þ w0kð  

k 
j =1 exp x

⊤W jx þ x⊤wj þ w0j
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Naive Bayes 
(different conditional variances) 

Naive Bayes 
(identical conditional variances) 

Linear discriminant analysis Quadratic discriminant analysis 

Fig. 16 Illustration of decision functions with normal distributions. A 
two-dimensional covariance matrix can be represented as an ellipse. In the 
naive Bayes model, the features are assumed to be independent and to have the 
same variance conditionally to the class, leading to covariance matrices being 
represented as circles. When the covariance matrices are assumed to be 
identical, the decision functions are linear instead of quadratic 

With the naive Bayes model, it is relatively common to have the 
conditional variances σ2 k to all be equal: 

8k,Σk = σ2 kI p = σ2 I p 

In this case, Eq. 4 can be even further simplified: 

logPðy= C kjx= xÞ 
= -

1 

2σ2 
x⊤ x þ 1 

σ2 
x⊤ μk -

1 

2σ2 
μ⊤ 
k μk - log σk þ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= x⊤wk þ w0k þ s
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w

•

here: 

wk = 1 σ2 μk is the vector of the linear term for class C k.

• w0k = - 1 
2σ2 μ

⊤ 
k μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1 
2σ2 x

⊤x - log σ- p 
2 logð2πÞ- log pxðxÞ is a term that 

does not depend on class C k. 

In this case, naive Bayes becomes a linear model. 

10.2 Linear 

Discriminant Analysis 

Linear discriminant analysis (LDA) makes the assumption that all 
the covariance matrices are identical but otherwise arbitrary: 

8k, Σk =Σ 

Therefore, Eq. 4 can be further simplified: 

logPðy= C kjx= xÞ 
= -

1 
2
½x - μk�⊤ Σ-1½x - μk�- 1 

2 
logjΣjþ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= -
1 
2 

x⊤Σ-1 x - x⊤Σ-1 μk - μ⊤ 
k Σ

-1 x þ μ⊤ 
k Σ

-1 μk

-
1 
2 
logjΣjþ logPðy= C kÞ- p 

2 
logð2πÞ- log pxðxÞ 

= - x⊤Σ-1 μk -
1 
2 
x⊤Σ-1 x -

1 
2 
μ⊤ 
k Σ

-1 μk þ logPðy= C kÞ- 1 
2 
logjΣj

-
p 
2 
logð2πÞ- log pxðxÞ 

= x⊤wk þ w0k þ s 
w

•

here: 

wk= Σ-1 μk is the vector of coefficients for class C k.

• w0k = - 1 
2 μ

⊤ 
k Σ

-1 μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1 
2 x

⊤Σ-1 x - - 1 
2 logjΣj- p 

2 logð2πÞ- log pxðxÞ is a term 
that does not depend on class C k. 

Therefore, linear discriminant analysis is a linear model. When Σ is 
diagonal, linear discriminant analysis is identical to naive Bayes with 
identical conditional variances. 

The probabilities for input x to belong to each class C k can then 
easily be computed: 

Pðy= C kjx= xÞ= 
exp x⊤wk þ w0kð Þ  

k 
j =1 exp x

⊤wj þ w0j 

10.3 Quadratic 

Discriminant Analysis 

Quadratic discriminant analysis makes no assumption on the covari-
ance matrices Σk that can all be arbitrary. Equation 4 can be 
written as:



Þ
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logPðy= C kjx= xÞ 
= -

1 
2 
x⊤Σ-1 

k x þ x⊤Σ-1 
k μk -

1 
2 
μ⊤ 
k Σ

-1 
k μk -

1 
2 
logjΣkj 

þ logPðy= C kÞ- p 
2 
logð2πÞ- log pxðxÞ 

= x⊤W kx þ x⊤wk þ w0k þ s 
w

•

here: 

W k = - 1 
2Σ

-1 
k is the matrix of the quadratic term for class C k.

• wk =Σ-1 
k μk is the vector of the linear term for class C k.

• w0k = - 1 
2 μ

⊤ 
k Σ

-1 
k μk -

1 
2 logjΣkjþ logPðy= C kÞ is the intercept 

for class C k.

• s = - p 
2 logð2πÞ- log pxðxÞ is a term that does not depend on 

class C k. 

Therefore, quadratic discriminant analysis is a quadratic model. 
The probabilities for input x to belong to each class C k can then 

easily be computed: 

Pðy= C kjx= xÞ= 
exp x⊤W kx þ x⊤wk þ w0kð  

k 
j =1 exp x

⊤W jx þ x⊤wj þ w0j 

11 Tree-Based Methods 

11.1 Decision Tree Binary decisions based on conditional statements are frequently 
used in everyday life because they are intuitive and easy to under-
stand. Figure 17 illustrates a general approach when someone is ill. 
Depending on conditional statements (severity of symptoms, abil-
ity to quickly consult a specialist), the decision (consult your gen-
eral practitioner or a specialist, or call for emergency services) is 
different. Models with such an architecture are often used in 
machine learning and are called decision trees. 

A decision tree is an algorithm containing only conditional 
statements and can be represented with a tree [17]. This graph 
consists of:

• Decision nodes for all the conditional statements

• Branches for the potential outcomes of each decision node

• Leaf nodes for the final decision 

Figure 18 illustrates a decision tree and its corresponding decision 
function. For a given sample, the final decision is obtained by 
following its corresponding path, starting at the root node. 

A decision tree recursively partitions the feature space in order 
to group samples with the same labels or similar target values. At 
each node, the objective is to find the best (feature, threshold) pair 
so that both subsets obtained with this split are the most pure, that



is, homogeneous. To do so, the best (feature, threshold) pair is 
defined as the pair that minimizes an impurity criterion. 
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Fig. 17 A general thought process when being ill. Depending on conditional 
statements (severity of symptoms, ability to quickly consult a specialist), the 
decision (consult your general practitioner or a specialist, or call for emergency 
services) is different 
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Fig. 18 A decision tree: (left) the rules learned by the decision tree and (right) the 
corresponding decision function 

Let S ⊆ X be a subset of training samples. For classification 
tasks, the distribution of the classes, that is, the proportion of 
each class, is used to measure the purity of the subset. Let pk be 
the proportion of samples from class C k in a given partition: 

pk = 
1 
jSj 

y∈S 

1y = C k 

Po

•

pular impurity criteria for classification tasks include: 

Gini index: ∑ kpk(1- pk)

• Entropy: - pk logðpkÞ
•

k 
Misclassification: 1-maxkpk
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Fig. 19 Illustration of Gini index and entropy. The entropy function takes larger 
values than the Gini index, especially for pk< 0.8, which thus is more discrimi-
native against heterogeneous subsets (when most classes only represent only a 
small proportion of the samples) than Gini index 

Figure 19 illustrates the values of the Gini index and the entropy 
for a single class C k and for different proportions of samples pk. One 
can see that the entropy function takes larger values than the Gini 
index, especially for pk<0.8. Since the sum of the proportions is 
equal to 1, most classes only represent a small proportion of the 
samples. Therefore, a simple interpretation is that entropy is more 
discriminative against heterogeneous subsets than the Gini index. 
Misclassification only takes into account the proportion of the most 
common class and tends to be even less discriminative against 
heterogeneous subsets than both entropy and Gini index. 

For regression tasks, the mean error from a reference value 
(such as the mean or the median) is often used as the impurity 
criterion:

• Mean squared error: 1 jSj ðy - yÞ2 with y = 1 jSj y

•
y∈S y∈S 

Mean absolute error: 1 jSj jy -medianSðyÞj 
Theoretically, a tree can grow until every leaf node is perfectly 

pure. However, such a tree would have a lot of branches and would 
be very complex, making it prone to overfitting. Several strategies 
are commonly used to limit the size of the tree. One approach 
consists in growing the tree with no restriction and then pruning 
the tree, that is, replacing subtrees with nodes [17]. Other popular 
strategies to limit the complexity of the tree are usually applied 
while the tree is grown and include setting:

• A maximum depth for the tree

• A minimum number of samples required to be at an internal 
node



•
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• A minimum number of samples required to split a given 
partition

• A maximum number of leaf nodes

• A maximum number of features considered (instead of all the 
features) to find the best split

• A minimum impurity decrease to split an internal node 

11.2 Random Forest One limitation of decision trees is their simplicity. Decision trees 
tend to use a small fraction of the features in their decision function. 
In order to use more features in the decision tree, growing a larger 
tree is required, but large trees tend to suffer from overfitting, that 
is, having a low bias but a high variance. One solution to decrease 
the variance without much increasing the bias is to build an ensem-
ble of trees with randomness, hence the name random forest 
[18]. An overview of random forests can be found in Box 5. 

In a bid to have trees that are not perfectly correlated (thus 
building actually different trees), each tree is built using only a 
subset of the training samples obtained with random sampling. 
Moreover, for each decision node of each tree, only a subset of 
the features are considered to find the best split. 

The final prediction is obtained by averaging the predictions of 
each tree. For classification tasks, the predicted class is either the 
most commonly predicted class (hard-voting) or the one with the 
highest mean probability estimate (soft-voting) across the trees. 
For regression tasks, the predicted value is usually the mean of the 
predicted values across the trees. 

Box 5: Random Forest

• Random forest: ensemble of decision trees with randomness 
introduced to build different trees

• Decision tree: algorithm containing only conditional state-
ments and represented with a tree 

Regularization: maximum depth for each tree, minimum 
number of samples required to split a given partition, etc. 

11.3 Extremely 

Randomized Trees 

Even though random forests involve randomness in sampling 
both the samples and the features, trees inside a random forest 
tend to be correlated, thus limiting the variance decrease. In order 
to decrease even more the variance of the model (while possibly 
increasing its bias) by growing less correlated trees, extremely 
randomized trees introduce more randomness [19]. Instead of 
looking for the best split among all the candidate (feature,



threshold) pairs, one threshold is drawn at random for each 
candidate feature, and the best of these randomly generated 
thresholds is chosen as the splitting rule. 
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12 Clustering 

So far, we have presented classic machine learning methods for 
classification and regression, which are the main components of 
supervised learning. Each input x(i) had an associated output y(i) . In  
this section, we present clustering, which is an unsupervised 
machine learning task. In unsupervised learning, only the inputs 
x(i) are available, with no associated outputs. As the ground truth is 
not available, the objective is to extract information from the input 
data without supervising the learning process with the output data. 

Clustering consists in finding groups of samples such that:

• Samples from the same group are similar.

• Samples from different groups are different. 

For instance, clustering can be used to identify disease subtypes for 
heterogeneous diseases such as Alzheimer’s disease and Parkinson’s 
disease. 

In this section, we present two of the most common clustering 
methods: the k-means algorithm and the Gaussian mixture model. 

12.1 k-means The k-means algorithm divides a set of n samples, denoted by X, 
into a set of k disjoint clusters, each denoted by X j, such that 
X = fX1, . . ., X kg. 

Figure 20 illustrates the concept of this algorithm. Each cluster 
X j is characterized by its centroid, denoted by μj, that is, the mean of 

the samples in this cluster: 
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Fig. 20 Illustration of the k-means algorithm. The objective of the algorithm is to 
find the centroids that minimize the within-cluster sum-of-squares criterion. In 
this example, the inertia is approximately equal to 184.80 and is the lowest 
possible inertia, meaning that the represented centroids are optimal
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μj = 
1 
jX j j

xðiÞ∈X j 

xðiÞ 

The centroids fully define the set of clusters because each sample is 
assigned to the cluster whose centroid is the closest. 

The k-means algorithm aims at finding centroids that minimize 
the inertia, also known as within-cluster sum-of-squares criterion: 

min
fμ1, ..., μkg 

k 

j =1 xðiÞ∈X j 

kxðiÞ - μjk2 2 

The original algorithm used to find the centroids is often referred 
to as Lloyd’s algorithm [20] and is presented in Algorithm 1. After 
initializing the centroids, a two-step loop is repeated until conver-
gence (when the centroids are identical for two consecutive itera-
tions) consisting of: 

1. The assignment step, where the clusters are updated based on 
the current centroids 

2. The update step, where the centroids are updated based on the 
current clusters 

When clusters are well-defined, a point from a given cluster is likely 
to stay in this cluster. Therefore, the assignment step can be sped up 
thanks to the triangle inequality by keeping track of lower and 
upper bounds for distances between points and centers, at the 
cost of higher memory usage [21]. 

Algorithm 1 Lloyd’s algorithm (aka naive k-means algorithm) 

esult: Centroids {μ1, . . . ,μk} 
nitialize the centroids {μ1, . . . ,μk} ; 
hile not converged do 

Assignment step: Compute the clusters (i.e., assign each 
sample to its nearest centroid): 

∀j ∈ {1, . . . , k}, Xj = {x(i) ∈ X  | ‖x(i)−μj‖2 
2 =  min  

l
‖x(i)−μl‖2 

2} 

Update step: Compute the centroids of the updated clusters: 

∀j ∈ {1, . . . , k}, μj = 
1 
j

∑

(i) 

x(i)
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Even though the k-means algorithm is one of the simplest and 
most used clustering methods, it has several downsides that should 
be kept in mind. 

First, the number of clusters k is a hyperparameter. Setting a 
value much different from the actual number of clusters may yield 
poor clusters. 

Second, the inertia is not a convex function. Although Lloyd’s 
algorithm is guaranteed to converge, it may converge to a local 
minimum that is not a global minimum. Figure 21 illustrates the 
convergence to such centroids. Several strategies are often applied 
to address this issue, including sophisticated centroid initialization 
[22] and running the algorithm numerous times and keeping the 
best run (i.e., the one yielding the lowest inertia). 

Inertia = 184.80 

Inertia = 623.67 Inertia = 953.91 

Inertia = 952.08 Inertia = 613.62 

Fig. 21 Illustration of the convergence of the k-means algorithm to bad local 
minima. In the upper figure, the algorithm converged to a global minimum 
because the inertia is equal to the minimum possible value (184.80); thus, the 
obtained clusters are optimal. In the four other figures, the algorithm converged 
to a local minima that are not global minima because the inertias are higher than 
the minimum possible value; thus, the obtained clusters are suboptimal
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Third, inertia makes the assumption that the clusters are convex 
and isotropic. The k-means algorithm may yield poor results when 
this assumption does not hold, such as with elongated clusters or 
manifolds with irregular shapes. 

Fourth, the Euclidean distance tends to be inflated (i.e., the 
ratio of the distances of the nearest and farthest neighbors to a 
given target is close to 1) in high-dimensional spaces, making 
inertia a poor criterion in such spaces [23]. One can alleviate this 
issue by running a dimensionality reduction method such as princi-
pal component analysis prior to the k-means algorithm. 

12.2 Gaussian 

Mixture Model 

A mixture model makes the assumption that each sample is gener-
ated from a mixture of several independent distributions. 

Let k be the number of distributions. Each distribution Fj is 
characterized by its probability of being picked, denoted by πj, and 
its density pj with parameters θj, denoted by pj(�; θj). Let Δ= (Δ1, 
. . ., Δk) be a vector-valued random variable such that: 

k 

j =1 

Δj =1 and 8j∈f1, . . ., kg, PðΔj =1Þ=1-PðΔj =0Þ= πj 

and (x1, . . ., xk) be independent random variables such that xj�Fj. 
The samples are assumed to be generated from a random variable x 
with density px such that: 

x= 
k 

j =1 

Δjxj 

8x∈X, pxðx, θÞ= 
k 

j =1 

πj pj ðx; θj Þ 

A Gaussian mixture model is a particular case of a mixture 
model in which each distribution Fj is a Gaussian distribution 
with mean vector μj and covariance matrix Σj: 

8j∈f1, . . ., kg, F j = N ðμj ,Σj Þ 
Figure 22 illustrates the learned distributions from a Gaussian 
mixture model. 

The objective is to find the parameters θ that maximize the 
likelihood, with θ= fμjgk j =1 

, fΣjgk j =1 
, fπjgk j =1 

: 

LðθÞ= ∏ 
n 

i =1 
pX ðxðiÞ; θÞ 

For computational reasons, it is easier to maximize the 
log-likelihood:



64 Johann Faouzi and Olivier Colliot

−10 −5 0 5 10 

−5 

0 

5 

10 

Gaussian mixture model 

Cluster 1 
Mean vector of distribution 1 
Covariance of distribution 3 
Cluster 2 
Mean vector of distribution 2 
Covariance of distribution 1 
Cluster 3 
Mean vector of distribution 3 
Covariance of distribution 2 

Fig. 22 Gaussian mixture model. For each estimated distribution, the mean 
vector and the ellipsis consisting of all the points within one standard deviation 
of the mean are plotted 

logðLðθÞÞ= 
n 

i =1 

logðpX ðxðiÞ; θÞÞ= 
n 

i =1 

log 
k 

j =1 

πj pj ðx; θj Þ 

Because the density pX(�; θ) is a weighted sum of Gaussian densities, 
the expression cannot be further simplified. 

In order to solve this maximization problem, an algorithm 
called expectation-maximization (EM) is often applied [24]. Algo-
rithm 2 describes the main concepts of this algorithm. After initi-
alizing the parameters of each distribution, a two-step loop is 
repeated until convergence (when the parameters are stable over 
consecutive loops):

• The expectation step, in which the probability for each sample x(i) 

to have been generated from distribution Fj is computed

• The maximization step, in which the probability and the para-
meters of each distribution are updated 

Because it is impossible to know which samples have been gener-
ated by each distribution, it is also impossible to directly maximize 
the log-likelihood, which is why we compute its expected value 
using the posterior probabilities, hence the name expectation step. 
The second step simply consists in maximizing the expected 
log-likelihood, hence the name maximization step.
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Algorithm 2 Expectation-maximization algorithm for Gauss-
ian mixture models 

esult: Mean vectors {μj}k 
j=1, covariance matrices {Σj}k 

j=1 and 
probabilities {πj}k 

j=1 

nitialize the mean vectors {μj}k 
j=1, covariance matrices {Σj}k 

j=1 

and probabilities {πj}k 
j=1 ; 

hile not converged do 

E-step: Compute the posterior probability γi(j) for each sample 
x(i) to have been generated from distribution Fj: 

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , k}, γi(j) =  
πjpj(x(i);θj,Σj)∑k 
l=1 πlpj(x(i);θl,Σl) 

M-step: Update the parameters of each distribution Fj: 

∀j ∈ {1, . . . , k}, μj =
∑n 

i=1 γi(j)x(i)
∑n 

i=1 γi(j) 

∀j ∈ {1, . . . , k}, Σj =
∑n 

i=1 γi(j)[x(i) − μj][x(i) − μj]�∑n 
i=1 γi(j) 

j 1, . . . , k  , πj = 
1 n∑

γi(j) 

Lloyd’s and EM algorithms have a lot of similarities. In the first 
step, the assignment step assigns each sample to its closest cluster, 
whereas the expectation step computes the probability for each 
sample to have been generated from each distribution. In the 
second step, the update step computes the centroid of each cluster 
as the mean of the samples in a given cluster, while the maximiza-
tion step updates the probability and the parameters of each distri-
bution as a weighted average over all the samples. For these reasons, 
the k-means algorithm is often referred to as a hard-voting cluster-
ing method, as opposed to the Gaussian mixture model which is 
referred to as a soft-voting clustering method. 

The Gaussian mixture model has several advantages over the k-
means algorithm. 

First, the use of normal distribution densities instead of Euclid-
ean distances dwindles the inflation issue in high-dimensional 
spaces. Second, the Gaussian mixture model includes covariance 
matrices, allowing for clusters with elliptical shapes, while the k-
means algorithm only includes centroids, forcing clusters to have 
circular shapes.
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Nonetheless, the Gaussian mixture model also has several draw-
backs, sharing a few with the k-means algorithm. 

First, the number of distributions k is a hyperparameter. Setting 
a value much different from the actual number of clusters may yield 
poor clusters. Second, the log-likelihood is not a concave function. 
Like Lloyd’s algorithm, the EM algorithm is guaranteed to con-
verge, but it may converge to a local maximum that is not a global 
maximum. Several strategies are often applied to address this issue, 
including sophisticated centroid initialization [22] and running the 
algorithm numerous times and keeping the best run (i.e., the one 
yielding the highest log-likelihood). Third, the Gaussian mixture 
model has more parameters than the k-means algorithm. Therefore, 
it usually requires more samples to accurately estimate its para-
meters (in particular the covariance matrices) than the k-means 
algorithm. 

13 Dimensionality Reduction 

Dimensionality reduction consists in finding a good mapping from 
the input space into a space of lower dimension. Dimensionality 
reduction can either be unsupervised or supervised. 

13.1 Principal 

Component Analysis 

For exploratory data analysis, it may be interesting to investigate 
the variances of the p features and the 1 2 pðp-1Þ covariances or 
correlations. However, as the value of p increases, this process 
becomes growingly tedious. Moreover, each feature may explain a 
small proportion of the total variance. It may be more desirable to 
have another representation of the data where a small number of 
features explain most of the total variance, in other words to have a 
coordinate system adapted to the input data. 

Principal component analysis (PCA) consists in finding a repre-
sentation of the data through principal components [25]. The prin-
cipal components are a sequence of unit vectors such that the ith 
vector is the best approximation of the data (i.e., maximizing the 
explained variance) while being orthogonal to the first i-1 vectors. 

Figure 23 illustrates principal component analysis when the 
input space is two-dimensional. On the upper figure, the training 
data in the original space is plotted. Both features explain about the 
same amount of the total variance, although one can clearly see that 
both features are strongly correlated. Principal component analysis 
identifies a new Cartesian coordinate system based on the input 
data. On the lower figure, the training data in the new coordinate 
system is plotted. The first dimension explains much more variance 
than the second dimension.
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Fig. 23 Illustration of principal component analysis. On the upper figure, the training data in the original space 
(blue points with black axes) is plotted. Both features explain about the same amount of the total variance, 
although one can clearly see a linear pattern. Principal component analysis learns a new Cartesian coordinate 
system based on the input data (red axes). On the lower figure, the training data in the new coordinate system 
is plotted (green points with red axes). The first dimension explains much more variance than the second 
dimension 

13.1.1 Full 

Decomposition 

Mathematically, given an input matrix X∈n × p that is centered 
(i.e., the mean value of each column X:,j is equal to zero), the 
objective is to find a matrix W∈p × p such that:

• W is an orthogonal matrix, i.e., its columns are unit vectors and 
orthogonal to each other.

• The new representation of the input data, denoted by T, consists 
of the coordinates in the Cartesian coordinate system induced by 
W (whose columns form an orthogonal basis of p with the 
Euclidean dot product):

T =XW

• Each column of W maximizes the explained variance. 
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Each column wi= W:,i is a principal component. Each input vector 
x is transformed into another vector t using a linear combination of 
each feature with the weights from the W matrix: 

t = x⊤W 

The first principal component w(1) is the unit vector that max-
imizes the explained variance: 

w1 = arg max 
kwk=1 

f 
n 

i =1 

xðiÞ⊤ wk 
= arg max 

kwk=1 

fkXwkg 
= arg max 

kwk=1 

fw⊤ X⊤ Xwkg 

w1 = arg max 
w∈p 

w⊤X⊤ Xw  

w⊤w 

As X⊤ X is a positive semi-definite matrix, a well-known result from 
linear algebra is that w(1) is the eigenvector associated with the 
largest eigenvalue of X⊤ X. 

The kth component is found by subtracting the first k-1 
principal components from X: 

X̂ k =X -
k-1 

s =1 

XwðsÞwðsÞ⊤ 

and then finding the unit vector that explains the maximum vari-
ance from this new data matrix: 

wk = arg max 
kwk=1 

fk X̂ kwkg= arg max 
w∈p 

w⊤ X̂ 
⊤ 
k X̂ kw 

w⊤w 

One can show that the eigenvector associated with the kth largest 
eigenvalue of the X⊤ X matrix maximizes the quantity to be 
maximized. 

Therefore, the matrix W is the matrix whose columns are the 
eigenvectors of the X⊤ X matrix, sorted by descending order of 
their associated eigenvalues. 

13.1.2 Truncated 

Decomposition 

Since each principal component iteratively maximizes the remain-
ing variance, the first principal components explain most of the 
total variance, while the last ones explain a tiny proportion of the 
total variance. Therefore, keeping only a subset of the ordered 
principal components usually gives a good representation of the 
input data. 

Mathematically, given a number of dimensions l, the new rep-
resentation is obtained by truncating the matrix of principal com-
ponents W to only keep the first l columns, resulting in the 
submatrix W:,:l:
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Fig. 24 Illustration of principal component analysis as a dimensionality reduction 
technique. The Iris flower dataset consists of 50 samples for each of 3 iris 
species (setosa, versicolor, and virginica) for which 4 features were measured, 
the length and the width of the sepals and petals, in centimeters. The projection 
of each sample on the first two principal components is shown in this figure. The 
first dimension explains most of the variance (92.46%) 
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~ 

=XW :,:l 

Figure 24 illustrates the use of principal component analysis as 
dimensionality reduction. The Iris flower dataset consists of 50 sam-
ples for each of 3 iris species (setosa, versicolor, and virginica) for 
which 4 features were measured, the length and the width of the 
sepals and petals, in centimeters. The projection of each sample on 
the first two principal components is shown in this figure. 

13.2 Linear 

Discriminant Analysis 

In Subheading 10, we introduced linear discriminant analysis 
(LDA) as a classification method. However, it can also be used as 
a supervised dimensionality reduction method. LDA fits a multi-
variate normal distribution for each class C k, so that each class is 
characterized by its mean vector μk∈p and has the same covariance 
matrix Σ∈p × p . However, a set of k points lies in a space of 
dimension at most k-1. For instance, a set of 2 points lies on a 
line, while a set of 3 points lies on a plane. Therefore, the subspace 
induced by the k mean vectors μk can be used as dimensionality 
reduction. 

There exists another formulation of linear discriminant analysis 
which is equivalent and more intuitive for dimensionality reduc-
tion. Linear discriminant analysis aims to find a linear projection so 
that the classes are separated as much as possible (i.e., projections of



samples from a same class are close to each other, while projections 
of samples from different classes are far from each other). 
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Mathematically, the objective is to find the matrix W∈p × l 

(with l≤ k-1) that maximizes the between-class scatter while also 
minimizing the within-class scatter: 

max 
W 

tr W⊤ SwWð Þ-1 
W⊤ SbWð Þ  

The within-class scatter matrix Sw summarizes the diffusion 
between the mean vector μk of class C k and all the inputs x(i) 

belonging to class C k, over all the classes: 

Sw = 
q 

k=1 yðiÞ = C k 

½xðiÞ - μk�½xðiÞ - μk�⊤ 

The between-class scatter matrix Sb summarizes the diffusion 
between all the mean vectors: 

Sb = 
q 

k=1 

nk½μk - μ�½μk - μ�⊤ 

where nk is the proportion of samples belonging to class C k and 

μ= q 
k=1nkμk = 1 n 

n 
i =1x

ðiÞ is the mean vector over all the input 

vectors. 
One can show that the W matrix consists of the first 

l eigenvectors of the matrix S -1 
w Sb with the corresponding eigen-

values being sorted in descending order. Just as in principal com-
ponent analysis, the corresponding eigenvalues can be used to 
determine the contribution of each dimension. However, the crite-
rion for linear discriminant analysis is different from the one from 
principal component analysis: it is to maximizing the separability of 
the classes instead of maximizing the explained variance. 

Figure 25 illustrates the use of linear discriminant analysis as a 
dimensionality reduction technique. We use the same Iris flower 
dataset as in Fig. 24 illustrating principal component analysis. The 
projection of each sample on the learned two-dimensional space is 
shown, and one can see that the first (horizontal) axis is more 
discriminative of the three classes with linear discriminant analysis 
than with principal component analysis. 

14 Kernel Methods 

Kernel methods allow for generalizing linear models to non-linear 
models with the use of kernel functions. 

As mentioned in Subheading 8, the main idea of kernel meth-
ods is to first map the input data from the original input space to a 
feature space and then perform dot products in this feature space.



Under certain assumptions, an optimal solution of the minimiza-
tion problem of the cost function admits the following form: 
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Fig. 25 Illustration of linear discriminant analysis as a dimensionality reduction 
technique. The Iris flower dataset consists of 50 samples for each of 3 iris 
species (setosa, versicolor, and virginica) for which 4 features were measured, 
the length and the width of the sepals and petals, in centimeters. The projection 
of each sample on the learned two-dimensional space is shown in this figure 

f = 
n 

i =1 

αiKð�, xðiÞÞ 

where K is the kernel function which is equal to the dot product in 
the feature space: 

8x, x ′∈ I , Kðx, x ′ Þ=ϕðxÞ⊤ ϕðx ′ Þ 
As this term frequently appears, we denote by K the n ×n symmet-
ric matrix consisting of the evaluations of the kernel on all the pairs 
of training samples: 

8i, j∈f1, . . .,ng, Kij =KðxðiÞ, xðjÞÞ 
In this section, we present the extension of two models previ-

ously introduced in this chapter, ridge regression and principal 
component analysis, with kernel functions. 

14.1 Kernel Ridge 

Regression 

Kernel ridge regression combines ridge regression with the kernel 
trick and thus learns a linear function in the space induced by the 
respective kernel and the training data [2]. For non-linear kernels, 
this corresponds to a non-linear function in the original input 
space.
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Mathematically, the objective is to find the function f with the 
following form: 

f = 
n 

i =1 

αiKð�, xðiÞÞ 

that minimizes the sum of squared errors with a 
ℓ2 penalization term: 

min 
f 

n 

i =1 

yðiÞ - f ðxðiÞ 2 þ λkf k2 

The cost function can be simplified using the specific form of the 
possible functions: 

n 

i =1 

ðyðiÞ - f ðxðiÞÞ2 þ λkf k2 

= 
n 

i =1 

yðiÞ -
n 

j =1 

αj kðxðjÞ, xðiÞÞ 
2 

þ λ 
n 

i =1 

αiK ð�, xðiÞÞ 
2 

= 
n 

i =1 

yðiÞ -α⊤K :,i 
2 þ λα⊤Kα 

= ky -Kαk2 2 þ λα⊤Kα 

Therefore, the minimization problem is: 

min
α 

ky -Kαk2 2 þ λα⊤Kα 

for which a solution is given by: 

α⋆ = K þ λIð Þ-1 y 

Figure 8 illustrates the prediction function of a kernel ridge 
regression method with a radial basis function kernel. The predic-
tion function is non-linear as the kernel is non-linear. 

14.2 Kernel Principal 

Component Analysis 

As mentioned in Subheading 13, principal component analysis 
consists in finding the linear orthogonal subspace in the original 
input space such that each principal component explains the most 
variance. The optimal solution is given by the first eigenvectors of 
X⊤ X with the corresponding eigenvalues being sorted in descend-
ing order. 

With kernel principal component analysis, the objective is to 
find the linear orthogonal subspace in the feature space such that 
each principal component in the feature space explains the most 
variance [26]. The solution is given by the first l eigenvectors 
(αk)1≤k≤l of the K matrix with the corresponding eigenvalues 
being sorted in descending order. The eigenvectors are normalized 
in order to be unit vectors in the feature space.
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Training data 

Projection with principal component analysis 

Projection with kernel principal component analysis 

Fig. 26 Illustration of kernel principal component analysis. Some non-linearly 
separable training data is plotted (top). The projected training data using 
principal component analysis remains non-linearly separable (middle). The 
projected training data using kernel principal component analysis (with a 
non-linear kernel) becomes linearly separable (bottom) 

Finally, the projection of any input x in the original space on the 
kth component can be computed as: 

ϕðxÞ⊤ αk = 
n 

i =1 

αkiKðx, xðiÞÞ 

Figure 26 illustrates the projection of some non-linearly separable 
classification data with principal component analysis and with ker-
nel principal component analysis with a non-linear kernel. The 
projected input data becomes linearly separable using kernel prin-
cipal component analysis, whereas the projected input data using 
(linear) principal component analysis remains non-linearly 
separable.
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15 Conclusion 

In this chapter, we described the main classic machine learning 
methods. Due to space constraints, the description of some of 
them was brief. The reader who seeks more details can refer to 
[5, 6]. All these approaches are implemented in the scikit-learn 
Python library [27]. A common point of the approaches presented 
in this chapter is that they use as input a set of given or pre-extracted 
features. On the contrary, deep learning approaches often provide 
an end-to-end learning setup within which the features are learned. 
These techniques are covered in Chaps. 3–6. 
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