Time Series Classification in Python

Johann Faouzi

Postdoctoral researcher

Aramis project-team, Paris Brain Institute, Inria, Sorbonne Université, CNRS, Inserm

EMA Seminar

March 24, 2022

Time Series Classification in Python EMA seminar, 03/24/2022 1/64

N
Outline

° Time series classification
@ Metric-based approaches
@ Feature-based approaches

e Managing your project as a software

e pyts: A Python Package for Time Series Classification

Time Series Classification in Python EMA seminar, 03/24/2022 2/64

. Timeseriesclassifcaton
Outline

e Time series classification

Time Series Classification in Python EMA seminar, 03/24/2022 3/64

|
Machine learning - classification

¢ Data: a set of samples (x, y) where x is the input and y is the label.

Obijective: To predict the label y from with its corresponding input «.

* Find a mapping f with parameters 6 from x to y: § = f(x;0)

e Optimize the parameters 6 on a training set of samples.

Evaluate the performance of the model on an independent test set of
samples.

Time Series Classification in Python EMA seminar, 03/24/2022 4/64

-
Machine learning for time series

e Time series data is unstructured — not suited as raw input to standard
machine learning classifiers (e.g., logistic regression).

* Two main approaches: feature-based and metric-based approaches.

Feature-based methods:

» Independent process: Running the feature extraction process before fitting
the classifier on the extracted features.

» Incorporated process: Including the feature extraction process in the
classifier (e.g., neural networks with several layers).

Metric-based methods: Adapting existing machine learning classifiers to
time series data (e.g., with specific metrics for nearest-neighbor methods
and specific kernels for kernel methods).

Time Series Classification in Python EMA seminar, 03/24/2022 5/64

Literature overview

e Not an exhaustive literature review.

¢ Highlight the main algorithms and the variety of methods.

* Time series are assumed to be univariate (a real number at each
timestamp) and not multivariate (a real-valued vector at each
timestamps, e.g. (latitude, longitude) pairs for GPS coordinates).

Time Series Classification in Python EMA seminar, 03/24/2022 6/64

Outline

Q Time series classification
@ Metric-based approaches

Time Series Classification in Python EMA seminar, 03/24/2022 7/64

Limitations of the Euclidean distance

* Simple example from speech recognition:

» Two audio recordings of the same person pronouncing the same sentence
but at different speech rates.

» Expectations: a relevant metric should return a low value (i.e., both time
series are similar).

e Two time series X = (z1,...,z,) e R*andY = (y1,...,ym) € R™

1/2
* Limitations of the Euclidean distance for time series: (Z(:vl - yi)2>
i
» Independent comparison (squared difference) in each dimension
» Not defined for two vectors of different sizes

Time Series Classification in Python EMA seminar, 03/24/2022 8/64

Global alignment

\

, 30
(COS (:%27")) k=0

Time Series Classification in Python EMA seminar, 03/24/2022

9/64

Dynamic time warping

¢ Local divergence: function that measures closeness between two
values, e.g.:
Yo,y €R, f(z,y) = (z —y)?

* Cost matrix: evaluation of the local divergence for every pair (z;, y;)

Vi7j (S {1,...7n} X {1,...,m},Cij :f(xi,yj)

e Warping path: sequence p = (p1,...,pr) such that:
» value condition: VI € {1,...,L},pr = (i1, 5i) € {1,...,n} x {1,...,m}
» boundary condition: p; = (1,1) and pr, = (n,m)

» step condition: Vi € {1,...,L —1},piy1 —p1 € {(0,1),(1,0),(1,1)}

Time Series Classification in Python EMA seminar, 03/24/2022 10/64

Dynamic time warping
¢ Cost associated with a warping path:

Cp (X,Y) = Z Cihjl

=1

¢ Dynamic time warping [SC78]: minimum
cost among all the possible warping
paths:

DTW (X,Y) = min C, (X,Y)

pEP

e Computed using dynamic programming:

DTW (X:ia Yj) - Ci7j + mln{DTW (X:i—la Yj—l)
DTW (X.;—1,Y};)
DTW (X.;,Y;;-1)}

. End
Cost matrix

Start

EMA seminar, 03/24/2022

Limitations of dynamic time warping

* High complexity: O(nm) for two time series of sizes n and m.

® (Possibly too) large time warps.

* Not a distance (separation property and triangle inequality not
satisfied) — no efficient nearest-neighbor search algorithm.

Time Series Classification in Python EMA seminar, 03/24/2022

12/64

Constraint regions

¢ |dea: Limit the possible values in a warping path.

Pros Cons

® | Decrease maximum time warp May not retrieve the optimal path

Decrease computational complexity | Hyperparameter

® A constraint region may depend on the values of both time series.

» Series-independent constraint regions: Sakoe-Chiba band [SC78], ltakura
parallelogram [lta75].

» Series-dependent constraint regions: Multiscale-DTW [MMKO06], FastDTW
[SCO07].

Time Series Classification in Python EMA seminar, 03/24/2022 13/64

Dynamic time warping (with constraint regions)

Classic DTW
(@A) DIW(X,Y)=04772

DTW with Sakoe-Chiba band

(b) DTW(X,Y)=0.4845

]

X

DTW with Itakura parallelogram

(©) DIW(X,Y)

0.6510

X

Multiscale DTW
(d) DTW(X,Y)=04772

X

X

Time Series Classification in Python

[J Banned region
[Constraint region
Il Optimal warping path

EMA seminar, 03/24/2022

14/64

Global alignment kernel

Dynamic time warping cannot be used to define a positive definite kernel
since it does not satisfy the triangle inequality.

Global alignment kernel [Cut11]:

GA (z,y) ZeXp (@, 9)/7)

peP

* k¢, is a positive definite kernel under mild conditions.

Soft dynamic time warping [CB17] (differentiable loss function):

soft-dtw., = —vlog kl,

Time Series Classification in Python EMA seminar, 03/24/2022 15/64

Outline

Q Time series classification

@ Feature-based approaches

Time Series Classification in Python EMA seminar, 03/24/2022 16/64

Shapelet-based algorithms

¢ |dea: Some small sequences of consecutive values may be specific to
certain classes.

® Shapelet: real-valued vector of size [< n (n being the size of the time
series).

e “Distance” between a time series X = (z1,...,x,) and a shapelet
S = (81,...781)1
1

d(X,S) = min Z($i+j - Sz‘)z

j oomn—l
JE{0, =1} =

¢ Algorithms: Shapelet transform [Lin+12], Learning shapelets [Gra+14].

Time Series Classification in Python EMA seminar, 03/24/2022 17/64

Learning shapelets

~
o
~
=
~

R 4 o
T . e C(lass1
0.5 7 o 0.6 ; e Class?2
(5]
© H
0.0 1 E °
[Z] 04 =
2 3
—0.5 g °
% °
—_ Z 024 @
-1.0 = Shapelet 1 a o .
/ — Shapelet 2 . ‘ e % *
-1.5 4 — 0.0 Soe%
T T T T T T T T T T
0 10 20 30 40 0.0 0.2 0.4 0.6 0.8

Distance to shapelet 1

Time Series Classification in Python EMA seminar, 03/24/2022 18/64

Dictionary-based approaches

Idea: transform a time series into a bag of words.

General algorithm:
@ Exiract subsequences using a sliding window.
@ Transform each subsequence into a word.
© Perform classification based on the word frequencies.

Algorithms: Bag-of-Patterns [LKL12], SAXVSM [SM13], BOSS [Sch15],
BOSSVS [Sch16], WEASEL [SL17]...

* Two main methods to transform a subsequence into a word:
» discretization of (standardized) values: SAX [Lin+07]
» discretization of Fourier coefficient: SFA [SH12]

Time Series Classification in Python EMA seminar, 03/24/2022 19/64

Symbolic Aggregate approXimation (SAX)

e

/ === normal
A" W ,
1.0 L =+=uniform

0.5

Time Series Classification in Python EMA seminar, 03/24/2022 20/64

Symbolic Fourier Approximation (SFA)

()
0
-5 T T T T T T T T
20 40 60 80 100 120 140
(b)
0
2
0 20 40 60 80 100 120 140
2743 64421 0365 18673 3777 0850 12030 19.556
() X
6.170 19.610 29
-3.015 -8.703 13.416
(©)
60 a
40 b
¢
20 p
04 —
—20 4 —o
—40 4
60 4
T T T T T T
Discrete Fourier transform coefficients
d d d d d ¢ d c
a b b b c d A d
b [¢ c b b b b

Time Series Classification in Python

EMA seminar, 03/24/2022

21/64

Imaging time series

® Old concept (for visualizing dynamic systems).

* Motivated by breakthroughs in computer vision (convolutional neural
networks).

e Algorithms: Recurrence plot [EKR87], Gramian angular field [WO15],
Markov transition field [WO15].

Time Series Classification in Python EMA seminar, 03/24/2022 22/64

Imaging time series: recurrence plots

(2)

Ty = (T4, Tigr, - - - 7xi+(m—1)7') -2

0 20 40

Rij =1 (HI]’?Z — fj”g < 5) 120 4 -4 -_
T :
80 o pi : o

. . 60 - . k
Rij = ||Zi — %2

Time Series Classification in Python EMA seminar, 03/24/2022

23/64

N = 0250 approzches
Imaging time series: Gramian angular fields

(a) (b)
1 90°
1 135° 45
. x; — min(z) ™
i=—14+2 . 5
. + max(x) — min(z)
-3 180° [
0 5’0 100
¢; = arccos(Z;)
1.0
GASFi’j = COS(¢¢ + (bg) 05
0.0
GADF; ; = sin(¢; — ¢;)
0.5
-1.0

Time Series Classification in Python EMA seminar, 03/24/2022 24/64

Imaging time series: Markov transition fields

0.000 0.000

0.000 0.219

0.000 1.0
0.8
0.097 0.000 0.000
0.6
q1 q2 qs qa

(@) 0.4
0.2

0.0

Time Series Classification in Python EMA seminar, 03/24/2022 25/64

Tree-based algorithms

* Motivated by the success of the random forest and extremely
randomized trees algorithms.

* Two main approaches:
» Extract features that are then used to fit a standard tree-based algorithm.

» Modify the tree building process to make use of the different metrics for
time series published in the literature.

e Algorithms: Time series forest [Den+13], time series bag-of-features
[BRT13], Proximity forest [Luc+19].

Time Series Classification in Python EMA seminar, 03/24/2022 26/64

Tree-based algorithms: Time series forest

@

0
-2 -
—4 4
T T T T T T T
0 20 40 60 80 100 120 140
(b) Interval 1 Interval 2 Interval 3
Mean SD Slope | Mean SD Slope | Mean SD Slope | Mean SD Slope
Time series 1 | -0.61 0.504 | 0.052 0.58 0.086 0.02 1.004 | 0.572 0.197 | 0.189 | 0.504 0.156
7 77 17 11
Time series 3 | 0.944 | 0.061 0.002 | 0.604 | 0.075 | -0.018 | -0.57 0.065 | -0.017 | -1.671 | 0.024 | 0.003

Johann Faouzi

Time Series Classification in Python

EMA seminar, 03/24/2022

27/64

Feature-based approaches

Neural networks: InceptionTime [Ism+20]

| K
. | output
. (classes

/
global fully

12 128
] i /)
|
channels —
time \ average connected
residual pooling

e
b

connections

Time Series Classification in Python EMA seminar, 03/24/2022

28/64

Random convolutional kernels

* Generating random convolutional kernels instead of learning them.

¢ Different aggregated features computed from each feature map from
usual global average/max pooling:

» proportion of positive values

» longest period of consecutive positive values

* Ridge classifier fitted on these extracted features.

e Algorithms: ROCKET [DPW20], MiniROCKET [DSW21], MultiROCKET
[Tan+21].

Time Series Classification in Python EMA seminar, 03/24/2022 29/64

Ensemble models

e Ensemble of several models (different algorithms, same algorithms with
different hyperparameters).

¢ State-of-the-art in terms of predictive performance only, but very high
algorithmic complexity.

e Algorithms: COTE [Bag+15], HIVE-COTE [LTB18; Bag+20; Mid+21],
TS-CHIEF [Shi+20].

Time Series Classification in Python EMA seminar, 03/24/2022 30/64

Time Series Classification Archive

e Website: http://timeseriesclassification.com

e QOver 100 univariate (and 30 multivariate) time series classification
datasets.

e Benchmark results for many algorithms.

Time Series Classification in Python EMA seminar, 03/24/2022 31/64

http://timeseriesclassification.com

Conclusion

* Many papers describing new algorithms dedicated to time series
classification have been published in the literature, with a wide variety of
approaches being investigated.

e Concrete application:

» One wants to tackle a real-world use case which is formulated as a time
series classification task.

» What are their possibilities?

Time Series Classification in Python EMA seminar, 03/24/2022 32/64

~ Managingyourpojectasasoftware |
Outline

e Managing your project as a software

Time Series Classification in Python EMA seminar, 03/24/2022 33/64

- vemsimyourpociasasotvare
Barriers to work on a real-world application

* |nvestigate several algorithms to see what works best.
® Possible issues with source code:
» Not available.

» Wiritten in different programming languages (Java, MATLAB, Python, R,
etc.).

» Provided commands only aiming at reproducing the results on some
given datasets.

» Barely commented and not easily extendable.

v

Barely documented.

Time Series Classification in Python EMA seminar, 03/24/2022 34/64

- vemsimyourpociasasotvare
Replication crisis

e Little incentive to publish the source code associated to a paper (until
recently).

e Source code rarely peer reviewed (until recently).

* Yet, all the experiments, thus the results and conclusions, rely on
the source code.

Time Series Classification in Python EMA seminar, 03/24/2022 35/64

. venegngyourpodasasoivare
Source code - different levels of usability

e Code availability: Easily accessing the source code of a project.

¢ Reproducibility: Reproducing (almost) the same experiments and
obtaining (almost) the same results (hardware, float precision, etc.).

¢ Replicability: Slightly modifying the experiments (different dataset,
different use case) and obtaining “good” results.

¢ Reusability: Easily integrating the tools made available in one project in
another project.

Time Series Classification in Python EMA seminar, 03/24/2022 36/64

. venegngyourpodasasoivare
Objective

¢ Present the notions and tools that make producing
reusable code easier.

e Advocate for managing your project as a software.

Time Series Classification in Python EMA seminar, 03/24/2022 37/64

. Managingyourprojectasasofware
Version control

* Problem: Updating the source code of a software may quickly become a
mess because of multiple versions of the same software at any given
time:

» Remote version

» Local version for each developer

® Version control: Tracking and providing control over changes to source
code.

¢ Distributed version control: The complete codebase, including its full
history, is mirrored on every developer’s computer, enabling automatic
management branching and merging.

e Tools:
) ° o\
» git 0 J)
glt mercurial
» Mercurial

Johann Faouzi Time Series Classification in Python EMA seminar, 03/24/2022 38/64

https://git-scm.com
https://www.mercurial-scm.org

Hosting your source code

~aie] () GitHub

- Gitlab &g/ GitLab

- swucket | Bitbucket
SECWESS S > SOURCEFORGE

Johann Faouzi Time Series Classification in Python EMA seminar, 03/24/2022 39/64

https://github.com/about
https://about.gitlab.com
https://bitbucket.org
https://sourceforge.net

. venegngyourpodasasoivare
Hosting your (Python) package

® Some programming languages (e.g., Python, R, TeX) have an official
archive to upload and download packages.

® PyPI: Python Package Index
» Over 330 thousand projects

pip install pyts

» Over 3 million releases
conda install -c conda-forge pyts

» Over 500k users

e conda: package, dependency and environment management:

» Limitation: Only a few packages are available in the default channel;
anyone can create their own channel to host their packages (but this has
several disadvantages).

» conda-forge is a community effort that provides conda packages for a wide
range of software in a single channel.

Time Series Classification in Python EMA seminar, 03/24/2022 40/64

https://pypi.org
https://docs.conda.io/en/latest/
https://conda-forge.org

- vemsimyourpociasasotvare
Semantic versioning

* Website: https://semver.org

e Summary:

Given a version number MAJOR.MINOR.PATCH, increment the:
» MAJOR version when you make incompatible API changes,

» MINOR version when you add functionality in a backwards compatible
manner, and

» PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as
extensions to the MAJOR.MINOR.PATCH format.

Time Series Classification in Python EMA seminar, 03/24/2022 41/64

https://semver.org

- vemsimyourpociasasotvare
Linting

¢ Definition: Process of checking the source code for programmatic and
stylistic errors.

e Examples of stylistic errors:
» Lines too long
» Defining variables that are never used

» Missing (or too many) whitespaces (or blank lines)

Time Series Classification in Python EMA seminar, 03/24/2022 42/64

- vemsimyourpociasasotvare
Linting in Python

¢ Mainly defined by two Python Enhancement Proposals (PEP):
» PEP 8: Style Guide for Python Code
» PEP 257: Docstring Conventions

* Main Python package: f1ake8
» flakes3 itself does not implement checks but builds a strong foundation for a
plugin ecosystem.

» Popular plugins:
* pyflakes: checks Python code for errors.
* pycodestyle: checks Python code against some PEP 8 style conventions.
* mccabe: checks McCabe complexity using Ned’s script.
* pep8-naming: checks Python code against PEP 8 naming conventions.

* flake8-docstrings: is an extension for pydocstyle to flake8.

Time Series Classification in Python EMA seminar, 03/24/2022 43/64

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://flake8.pycqa.org/en/stable/
https://pypi.org/project/pyflakes/
https://pypi.org/project/pycodestyle/
https://pypi.org/project/mccabe/
https://pypi.org/project/pep8-naming/
https://pypi.org/project/flake8-docstrings/
https://pypi.org/project/pydocstyle/

- vemsimyourpociasasotvare
Code style (in Python)

e Even when abiding by PEP 8 style conventions, there are still many
ways to write the same piece of code.

e Black: The uncompromising code formatter:
» Blackened code looks the same regardless of the project you're reading.

» Formatting becomes transparent after a while and you can focus on the
content instead.

» Black makes code review faster by producing the smallest diffs possible.

Time Series Classification in Python EMA seminar, 03/24/2022 44/64

https://black.readthedocs.io/en/stable/

. venegngyourpodasasoivare
Testing

® Would you state a new theorem without giving its proof?

Time Series Classification in Python EMA seminar, 03/24/2022 45/64

. venegngyourpodasasoivare
Testing

® Would you state a new theorem without giving its proof?

* Would you apply a theorem without checking if the hypotheses are
satisfied?

Time Series Classification in Python EMA seminar, 03/24/2022 45/64

- vemsimyourpociasasotvare
Testing

® Would you state a new theorem without giving its proof?

* Would you apply a theorem without checking if the hypotheses are
satisfied?

e Would you trust anyone’s code (including yours) without it being tested?

Time Series Classification in Python EMA seminar, 03/24/2022 45/64

- vemsimyourpociasasotvare
Testing

Objective: Testing that your code works and does what it is supposed to
do.

¢ Unit testing: Testing individual modules of an application in isolation to
confirm that the code is doing things right.

¢ Integration testing: Checking if different submodules of your project are
working fine when combined together.

¢ Functional testing: Testing a functionality in the project (may interact
with dependencies) to confirm that the code is doing the right things.

Time Series Classification in Python EMA seminar, 03/24/2022 46/64

- vemsimyourpociasasotvare
Testing in Python

® unittest: Python package from the standard library.

* nose! deprecated Python package.

* pytest: the most popular Python package (easier, more flexible).

Time Series Classification in Python EMA seminar, 03/24/2022 47/64

https://docs.python.org/3/library/unittest.html
https://nose.readthedocs.io/en/latest/
https://docs.pytest.org/en/stable/

Code coverage

¢ Definition: a measure used to describe the degree to which the source
code of a program is executed when a particular test suite is run.

e Common metric: percentage of lines that have been executed at least
once. Available at any level:

» in the whole module,
» in any submodule,

» in any file.

® Reliant on the report of the testing tool used to run the test suite.

Time Series Classification in Python EMA seminar, 03/24/2022 48/64

- vemsimyourpociasasotvare
Code coverage in Python

® coverage: general tool (initially developed to be used with unittest).

® pytest—cov: plugin for pytest.

Time Series Classification in Python EMA seminar, 03/24/2022 49/64

https://coverage.readthedocs.io/en/stable/
https://pytest-cov.readthedocs.io/en/stable/

Code coverage (online)

® Reporting the code coverage results online has several upsides:
» Information easily available to anyone (no need to run a command)
» User-friendly report (sunburst graph, code coverage at any level, etc.)

» Can be included in the continuous integration pipeline (e.g., monitoring
the change in code coverage in a pull request)

e Available tools: KP Codecov

» Codecov

> Coveralls COVERALLS

Time Series Classification in Python EMA seminar, 03/24/2022 50/64

https://about.codecov.io
https://coveralls.io

. Managingyourprojectasasofware
Documentation

* A software (and more generally any source code) without its
corresponding documentation is almost useless.

¢ Key elements of any documentation:
» Installation instructions
» User guide
» API documentation

» Examples

e Other useful elements: getting started, tutorials, changelog, glossary,
developer guide, etc.

Time Series Classification in Python EMA seminar, 03/24/2022 51/64

- vemsimyourpociasasotvare
Documentation in Python

® Sphinx: Python documentation generator

» Originally created for the Python documentation

» Expanded to other programming languages (C, PHP, Ruby, JavaScript, etc.)
» Many useful extensions, including:

* sphinx.ext.autodoc: Include documentation from docstrings

* sphinx.ext.autodoc: Generate autodoc summaries

* sphinx.ext.viewcode: Add links to highlighted source code

* sphinx.ext.doctest: Test snippets in the documentation

* sphinx_gallery: Build an HTML gallery of examples from any set of Python
scripts

® MkDocs: project documentation with Markdown

Time Series Classification in Python EMA seminar, 03/24/2022 52/64

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html
https://www.sphinx-doc.org/en/master/usage/extensions/viewcode.html
https://www.sphinx-doc.org/en/master/usage/extensions/doctest.html
https://sphinx-gallery.github.io/stable/index.html
https://www.mkdocs.org

- vemsimyourpociasasotvare
Documentation (online)

A website dedicated to the documentation is much more user-friendly
than a PDF file with hundreds or even thousands of pages.

ReadTheDocs: Simplify software documentation by automating building,
versioning, and hosting of your docs for you.

GitHub Pages: Websites for you and your projects.
» Hosted directly from your GitHub repository.
» Just edit, push, and your changes are live.

Automatically redirect to another website if you own a dedicated domain.

Time Series Classification in Python EMA seminar, 03/24/2022 53/64

https://readthedocs.org
https://pages.github.com

Continuous integration

e Rationale: Making sure that any version of the remote source code
always works.

e Content: linting, testing, code coverage, documentation, etc.

¢ Workflow: Before changing the remote source code:
@ Run the continuous integration locally.

@ Run the continuous integration remotely (several operating systems, several
versions of dependencies, etc.).

@ If successful, the changes can be merged.

Time Series Classification in Python EMA seminar, 03/24/2022 54/64

Continuous integration (online)

Many services available, all of them being free for open source projects (with
reasonable restrictions), including:

® Azure Pipelines Q Azure Pipelines
e Travis Cl Travis Cl
* CircleCl Qcircleci
e AppVeyor @ AppVeyor

e Jenkins

Time Series Classification in Python EMA seminar, 03/24/2022 55/64

https://azure.microsoft.com/fr-fr/services/devops/pipelines/
https://travis-ci.org
https://circleci.com
https://www.appveyor.com
https://www.jenkins.io

 ytsiAPython Package for Time Series Classifiation |
Outline

e pyts: A Python Package for Time Series Classification

Time Series Classification in Python EMA seminar, 03/24/2022 56/64

D e e
What is pyts?

e Python package dedicated to time series classification.

e Objective: Make working on time series classification easy:

» Data loading utilities, preprocessing tools, implementations of many
algorithms,

» Under a unified application programming interface,

» Compatible with scikit-learn tools such as cross-validation and
pipelines.

® Published in the Open Source Section of Journal of Machine Learning
Research in 2020 [FJ20].

Time Series Classification in Python EMA seminar, 03/24/2022 57/64

 eyeeiAPython Padkagofor Time Seres lasieaon
Concrete example

N

Let’s see how the tools presented in the second
section are applied in this package.

Time Series Classification in Python EMA seminar, 03/24/2022 58/64

https://github.com/johannfaouzi/pyts

 ytsiAPython Package for Time Series Classifiation |
Thanks

Thank you for your attention

Johann Faouzi Time Series Classification in Python EMA seminar, 03/24/2022 59/64

 pyesiAPython Package for Time Series Classification
References |

[Bag+15] Anthony Bagnall et al. “Time-Series Classification with COTE: The Collective of
Transformation-Based Ensembles”. In: |[EEE Transactions on Knowledge and Data
Engineering 27.9 (Sept. 2015), pp. 2522-2535.

[Bag+20] Anthony Bagnall et al. “On the Usage and Performance of the Hierarchical Vote
Collective of Transformation-Based Ensembles Version 1.0 (HIVE-COTE v1.0)". In:
Advanced Analytics and Learning on Temporal Data. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 3—18.

[BRT13] Mustafa Gokce Baydogan, George Runger, and Eugene Tuv. “A Bag-of-Features
Framework to Classify Time Series”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35.11 (Nov. 2013), pp. 2796—-2802.

[CB17] Marco Cuturi and Mathieu Blondel. “Soft-DTW: a Differentiable Loss Function for
Time-Series”. In: Proceedings of the 34th International Conference on International
Conference on Machine Learning. PMLR. 2017, pp. 894-903.

[Cut11] Marco Cuturi. “Fast Global Alignment Kernels”. In: Proceedings of the 28th
International Conference on International Conference on Machine Learning. June
2011, pp. 929-936.

[Den+13] Houtao Deng et al. “A time series forest for classification and feature extraction”. In:
Information Sciences 239 (Aug. 2013), pp. 142—153.

Time Series Classification in Python EMA seminar, 03/24/2022 60/64

 pyesiAPython Package for Time Series Classification
References Il

[DPW20]

[DSW21]

[EKR87]

[FJ20]

[Gra+14]

[Ism+20]

Angus Dempster, Frangois Petitjean, and Geoffrey |. Webb. “ROCKET: exceptionally
fast and accurate time series classification using random convolutional kernels”. In:
Data Mining and Knowledge Discovery 34.5 (Sept. 2020), pp. 1454—1495.

Angus Dempster, Daniel F. Schmidt, and Geoffrey I. Webb. “MiniRocket: A Very Fast
(Almost) Deterministic Transform for Time Series Classification”. In: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Aug.
2021, pp. 248-257.

J.-P. Eckmann, S. Oliffson Kamphorst, and D. Ruelle. “Recurrence Plots of Dynamical
Systems”. In: Europhysics Letters (EPL) 4.9 (Nov. 1987), pp. 973-977.

Johann Faouzi and Hicham Janati. “pyts: A Python Package for Time Series
Classification”. In: Journal of Machine Learning Research 21.46 (2020), pp. 1-6.

Josif Grabocka et al. “Learning Time-Series Shapelets”. In: Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining.
2014, pp. 392—401.

Hassan Ismail Fawaz et al. “InceptionTime: Finding AlexNet for time series
classification”. In: Data Mining and Knowledge Discovery 34.6 (Nov. 2020),
pp. 1936-1962.

Time Series Classification in Python EMA seminar, 03/24/2022 61/64

References llI

[Ita75] F. ltakura. “Minimum prediction residual principle applied to speech recognition”. In:
IEEE Transactions on Acoustics, Speech, and Signal Processing 23.1 (Feb. 1975),
pp. 67-72.

”

[Lin+07] Jessica Lin et al. “Experiencing SAX: a novel symbolic representation of time series”.
In: Data Mining and Knowledge Discovery 15.2 (Oct. 2007), pp. 107—144.

[Lin+12] Jason Lines et al. “A Shapelet Transform for Time Series Classification”. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2012, pp. 289-297.

[LKL12] Jessica Lin, Rohan Khade, and Yuan Li. “Rotation-invariant similarity in time series
using bag-of-patterns representation”. In: Journal of Intelligent Information Systems
39.2 (Oct. 2012), pp. 287-315.

[LTB18] Jason Lines, Sarah Taylor, and Anthony Bagnall. “Time Series Classification with
HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based Ensembles”.
In: ACM Transactions on Knowledge Discovery from Data 12.5 (July 2018),
52:1-52:35.

[Luc+19] Benjamin Lucas et al. “Proximity Forest: an effective and scalable distance-based
classifier for time series”. In: Data Mining and Knowledge Discovery 33.3 (2019),
pp. 607—635.

Time Series Classification in Python EMA seminar, 03/24/2022 62/64

 ytsiAPython Package for Time Series Classifiation |
References IV

[Mid+21]

[MMKO6]

[SC07]

[SC78]

[Sch15]

[Sch16]

[SH12]

Matthew Middlehurst et al. “HIVE-COTE 2.0: a new meta ensemble for time series
classification”. In: arXiv:2104.07551 [cs] (Apr. 2021).

Meinard Mdller, Henning Mattes, and Frank Kurth. “An efficient multiscale approach
to audio synchronization”. In: In Proceedings of the 6th International Conference on
Music Information Retrieval. 2006, pp. 192—-197.

Stan Salvador and Philip Chan. “Toward Accurate Dynamic Time Warping in Linear
Time and Space”. In: Intelligent Data Analysis 11.5 (Oct. 2007), pp. 561-580.

H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization for spoken
word recognition”. In: /EEE Transactions on Acoustics, Speech, and Signal
Processing 26.1 (Feb. 1978), pp. 43-49.

Patrick Schafer. “The BOSS is concerned with time series classification in the
presence of noise”. In: Data Mining and Knowledge Discovery 29.6 (Nov. 2015),
pp. 1505-1530.

Patrick Schafer. “Scalable time series classification”. In: Data Mining and Knowledge
Discovery 30.5 (Sept. 2016), pp. 1273—-1298.

Patrick Schafer and Mikael Hogqvist. “SFA: a symbolic fourier approximation and
index for similarity search in high dimensional datasets”. In: Proceedings of the 15th
International Conference on Extending Database Technology - EDBT ’'12. Berlin,
Germany: ACM Press, 2012, p. 516.

Time Series Classification in Python EMA seminar, 03/24/2022 63/64

 ytsiAPython Package for Time Series Classifiation |
References V

[Shi+20] Ahmed Shifaz et al. “TS-CHIEF: a scalable and accurate forest algorithm for time
series classification”. In: Data Mining and Knowledge Discovery 34.3 (May 2020),
pp. 742-775.

[SL17] Patrick Schafer and Ulf Leser. “Fast and Accurate Time Series Classification with
WEASEL". In: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management - CIKM '17 (2017), pp. 637-646.

[SM13] P. Senin and S. Malinchik. “SAX-VSM: Interpretable Time Series Classification Using
SAX and Vector Space Model”. In: 2013 IEEE 13th International Conference on Data
Mining. Dec. 2013, pp. 1175-1180.

[Tan+21] Chang Wei Tan et al. “MultiRocket: Effective summary statistics for convolutional
outputs in time series classification”. In: ArXiv (2021).

[WO15] Zhiguang Wang and Tim Oates. “Imaging Time-series to Improve Classification and
Imputation”. In: Proceedings of the 24th International Conference on Artificial
Intelligence. IJCAI'15. AAAI Press, 2015, pp. 3939-3945.

Time Series Classification in Python EMA seminar, 03/24/2022 64/64

	Time series classification
	Metric-based approaches
	Feature-based approaches

	Managing your project as a software
	pyts: A Python Package for Time Series Classification
	References

