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° Time series classification
@ Metric-based approaches
@ Feature-based approaches

e Managing your project as a software

e pyts: A Python Package for Time Series Classification
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|
Machine learning - classification

¢ Data: a set of samples (x, y) where x is the input and y is the label.

Obijective: To predict the label y from with its corresponding input «.

* Find a mapping f with parameters 6 from x to y: § = f(x;0)

e Optimize the parameters 6 on a training set of samples.

Evaluate the performance of the model on an independent test set of
samples.
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Machine learning for time series

e Time series data is unstructured — not suited as raw input to standard
machine learning classifiers (e.g., logistic regression).

* Two main approaches: feature-based and metric-based approaches.

Feature-based methods:

» Independent process: Running the feature extraction process before fitting
the classifier on the extracted features.

» Incorporated process: Including the feature extraction process in the
classifier (e.g., neural networks with several layers).

Metric-based methods: Adapting existing machine learning classifiers to
time series data (e.g., with specific metrics for nearest-neighbor methods
and specific kernels for kernel methods).
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Literature overview

e Not an exhaustive literature review.

¢ Highlight the main algorithms and the variety of methods.

* Time series are assumed to be univariate (a real number at each
timestamp) and not multivariate (a real-valued vector at each
timestamps, e.g. (latitude, longitude) pairs for GPS coordinates).
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Q Time series classification
@ Metric-based approaches
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Limitations of the Euclidean distance

* Simple example from speech recognition:

» Two audio recordings of the same person pronouncing the same sentence
but at different speech rates.

» Expectations: a relevant metric should return a low value (i.e., both time
series are similar).

e Two time series X = (z1,...,z,) e R*andY = (y1,...,ym) € R™

1/2
* Limitations of the Euclidean distance for time series: (Z(:vl - yi)2>
i
» Independent comparison (squared difference) in each dimension
» Not defined for two vectors of different sizes
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Dynamic time warping

¢ Local divergence: function that measures closeness between two
values, e.g.:
Yo,y €R, f(z,y) = (z —y)?

* Cost matrix: evaluation of the local divergence for every pair (z;, y;)

Vi7j (S {1,...7n} X {1,...,m},Cij :f(xi,yj)

e Warping path: sequence p = (p1,...,pr) such that:
» value condition: VI € {1,...,L},pr = (i1, 5i) € {1,...,n} x {1,...,m}
» boundary condition: p; = (1,1) and pr, = (n,m)

» step condition: Vi € {1,...,L —1},piy1 —p1 € {(0,1),(1,0),(1,1)}

Time Series Classification in Python EMA seminar, 03/24/2022 10/64



Dynamic time warping
¢ Cost associated with a warping path:

Cp (X,Y) = Z Cihjl

=1

¢ Dynamic time warping [SC78]: minimum
cost among all the possible warping
paths:

DTW (X,Y) = min C, (X,Y)

pEP

e Computed using dynamic programming:

DTW (X:ia Yj) - Ci7j + mln{DTW (X:i—la Yj—l)
DTW (X.;—1,Y};)
DTW (X.;,Y;;-1)}

. End
Cost matrix

Start
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Limitations of dynamic time warping

* High complexity: O(nm) for two time series of sizes n and m.

® (Possibly too) large time warps.

* Not a distance (separation property and triangle inequality not
satisfied) — no efficient nearest-neighbor search algorithm.
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Constraint regions

¢ |dea: Limit the possible values in a warping path.

Pros Cons

® | Decrease maximum time warp May not retrieve the optimal path

Decrease computational complexity | Hyperparameter

® A constraint region may depend on the values of both time series.

» Series-independent constraint regions: Sakoe-Chiba band [SC78], ltakura
parallelogram [lta75].

» Series-dependent constraint regions: Multiscale-DTW [MMKO06], FastDTW
[SCO07].
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Dynamic time warping (with constraint regions)

Classic DTW
(@A) DIW(X,Y)=04772

DTW with Sakoe-Chiba band

(b) DTW(X,Y)=0.4845

]

X

DTW with Itakura parallelogram

(©) DIW(X,Y)

0.6510

X

Multiscale DTW
(d)  DTW(X,Y)=04772

X

X
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Global alignment kernel

Dynamic time warping cannot be used to define a positive definite kernel
since it does not satisfy the triangle inequality.

Global alignment kernel [Cut11]:

GA (z,y) ZeXp (@, 9)/7)

peP

* k¢, is a positive definite kernel under mild conditions.

Soft dynamic time warping [CB17] (differentiable loss function):

soft-dtw., = —vlog kl,
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@ Feature-based approaches
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Shapelet-based algorithms

¢ |dea: Some small sequences of consecutive values may be specific to
certain classes.

® Shapelet: real-valued vector of size [ < n (n being the size of the time
series).

e “Distance” between a time series X = (z1,...,x,) and a shapelet
S = (81,...781)1
1

d(X,S) = min Z($i+j - Sz‘)z

j oomn—l
JE{0, =1} =

¢ Algorithms: Shapelet transform [Lin+12], Learning shapelets [Gra+14].
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Learning shapelets
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Dictionary-based approaches

Idea: transform a time series into a bag of words.

General algorithm:
@ Exiract subsequences using a sliding window.
@ Transform each subsequence into a word.
© Perform classification based on the word frequencies.

Algorithms: Bag-of-Patterns [LKL12], SAXVSM [SM13], BOSS [Sch15],
BOSSVS [Sch16], WEASEL [SL17]...

* Two main methods to transform a subsequence into a word:
» discretization of (standardized) values: SAX [Lin+07]
» discretization of Fourier coefficient: SFA [SH12]
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Symbolic Aggregate approXimation (SAX)
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Symbolic Fourier Approximation (SFA)
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Imaging time series

® Old concept (for visualizing dynamic systems).

* Motivated by breakthroughs in computer vision (convolutional neural
networks).

e Algorithms: Recurrence plot [EKR87], Gramian angular field [WO15],
Markov transition field [WO15].
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Imaging time series: recurrence plots
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N = 0250 approzches
Imaging time series: Gramian angular fields

(a) (b)
1 90°
1 135° 45
. x; — min(z) ™
i=—14+2 . 5
. + max(x) — min(z)
-3 180° [
0 5’0 100
¢; = arccos(Z;)
1.0
GASFi’j = COS(¢¢ + (bg) 05
0.0
GADF; ; = sin(¢; — ¢;)
0.5
-1.0

Time Series Classification in Python EMA seminar, 03/24/2022 24/64



Imaging time series: Markov transition fields
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Tree-based algorithms

* Motivated by the success of the random forest and extremely
randomized trees algorithms.

* Two main approaches:
» Extract features that are then used to fit a standard tree-based algorithm.

» Modify the tree building process to make use of the different metrics for
time series published in the literature.

e Algorithms: Time series forest [Den+13], time series bag-of-features
[BRT13], Proximity forest [Luc+19].
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Tree-based algorithms: Time series forest

@
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(b) Interval 1 Interval 2 Interval 3
Mean SD Slope | Mean SD Slope | Mean SD Slope | Mean SD Slope
Time series 1 | -0.61 0.504 | 0.052 0.58 0.086 0.02 1.004 | 0.572 0.197 | 0.189 | 0.504 0.156
7 77 17 11
Time series 3 | 0.944 | 0.061 0.002 | 0.604 | 0.075 | -0.018 | -0.57 0.065 | -0.017 | -1.671 | 0.024 | 0.003
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Feature-based approaches

Neural networks: InceptionTime [Ism+20]
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Random convolutional kernels

* Generating random convolutional kernels instead of learning them.

¢ Different aggregated features computed from each feature map from
usual global average/max pooling:

» proportion of positive values

» longest period of consecutive positive values

* Ridge classifier fitted on these extracted features.

e Algorithms: ROCKET [DPW20], MiniROCKET [DSW21], MultiROCKET
[Tan+21].
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Ensemble models

e Ensemble of several models (different algorithms, same algorithms with
different hyperparameters).

¢ State-of-the-art in terms of predictive performance only, but very high
algorithmic complexity.

e Algorithms: COTE [Bag+15], HIVE-COTE [LTB18; Bag+20; Mid+21],
TS-CHIEF [Shi+20].
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Time Series Classification Archive

e Website: http://timeseriesclassification.com

e QOver 100 univariate (and 30 multivariate) time series classification
datasets.

e Benchmark results for many algorithms.
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Conclusion

* Many papers describing new algorithms dedicated to time series
classification have been published in the literature, with a wide variety of
approaches being investigated.

e Concrete application:

» One wants to tackle a real-world use case which is formulated as a time
series classification task.

» What are their possibilities?
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~ Managingyourpojectasasoftware |
Outline

e Managing your project as a software
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- vemsimyourpociasasotvare
Barriers to work on a real-world application

* |nvestigate several algorithms to see what works best.
® Possible issues with source code:
» Not available.

» Wiritten in different programming languages (Java, MATLAB, Python, R,
etc.).

» Provided commands only aiming at reproducing the results on some
given datasets.

» Barely commented and not easily extendable.

v

Barely documented.
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Replication crisis

e Little incentive to publish the source code associated to a paper (until
recently).

e Source code rarely peer reviewed (until recently).

* Yet, all the experiments, thus the results and conclusions, rely on
the source code.
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Source code - different levels of usability

e Code availability: Easily accessing the source code of a project.

¢ Reproducibility: Reproducing (almost) the same experiments and
obtaining (almost) the same results (hardware, float precision, etc.).

¢ Replicability: Slightly modifying the experiments (different dataset,
different use case) and obtaining “good” results.

¢ Reusability: Easily integrating the tools made available in one project in
another project.
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. venegngyourpodasasoivare
Objective

¢ Present the notions and tools that make producing
reusable code easier.

e Advocate for managing your project as a software.
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. Managingyourprojectasasofware
Version control

* Problem: Updating the source code of a software may quickly become a
mess because of multiple versions of the same software at any given
time:

» Remote version

» Local version for each developer

® Version control: Tracking and providing control over changes to source
code.

¢ Distributed version control: The complete codebase, including its full
history, is mirrored on every developer’s computer, enabling automatic
management branching and merging.

e Tools:
) ° o\
» git 0 J)
glt mercurial
» Mercurial
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Hosting your source code

~aie] () GitHub

- Gitlab &g/ GitLab

- swucket | Bitbucket
SECWESS S > SOURCEFORGE
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. venegngyourpodasasoivare
Hosting your (Python) package

® Some programming languages (e.g., Python, R, TeX) have an official
archive to upload and download packages.

® PyPI: Python Package Index
» Over 330 thousand projects

pip install pyts

» Over 3 million releases
conda install -c conda-forge pyts

» Over 500k users

e conda: package, dependency and environment management:

» Limitation: Only a few packages are available in the default channel;
anyone can create their own channel to host their packages (but this has
several disadvantages).

» conda-forge is a community effort that provides conda packages for a wide
range of software in a single channel.
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- vemsimyourpociasasotvare
Semantic versioning

* Website: https://semver.org

e Summary:

Given a version number MAJOR.MINOR.PATCH, increment the:
» MAJOR version when you make incompatible API changes,

» MINOR version when you add functionality in a backwards compatible
manner, and

» PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as
extensions to the MAJOR.MINOR.PATCH format.
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- vemsimyourpociasasotvare
Linting

¢ Definition: Process of checking the source code for programmatic and
stylistic errors.

e Examples of stylistic errors:
» Lines too long
» Defining variables that are never used

» Missing (or too many) whitespaces (or blank lines)
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- vemsimyourpociasasotvare
Linting in Python

¢ Mainly defined by two Python Enhancement Proposals (PEP):
» PEP 8: Style Guide for Python Code
» PEP 257: Docstring Conventions

* Main Python package: f1ake8
» flakes3 itself does not implement checks but builds a strong foundation for a
plugin ecosystem.

» Popular plugins:
* pyflakes: checks Python code for errors.
* pycodestyle: checks Python code against some PEP 8 style conventions.
* mccabe: checks McCabe complexity using Ned’s script.
* pep8-naming: checks Python code against PEP 8 naming conventions.

* flake8-docstrings: is an extension for pydocstyle to flake8.
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- vemsimyourpociasasotvare
Code style (in Python)

e Even when abiding by PEP 8 style conventions, there are still many
ways to write the same piece of code.

e Black: The uncompromising code formatter:
» Blackened code looks the same regardless of the project you're reading.

» Formatting becomes transparent after a while and you can focus on the
content instead.

» Black makes code review faster by producing the smallest diffs possible.
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. venegngyourpodasasoivare
Testing

® Would you state a new theorem without giving its proof?
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. venegngyourpodasasoivare
Testing

® Would you state a new theorem without giving its proof?

* Would you apply a theorem without checking if the hypotheses are
satisfied?
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- vemsimyourpociasasotvare
Testing

® Would you state a new theorem without giving its proof?

* Would you apply a theorem without checking if the hypotheses are
satisfied?

e Would you trust anyone’s code (including yours) without it being tested?
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- vemsimyourpociasasotvare
Testing

Objective: Testing that your code works and does what it is supposed to
do.

¢ Unit testing: Testing individual modules of an application in isolation to
confirm that the code is doing things right.

¢ Integration testing: Checking if different submodules of your project are
working fine when combined together.

¢ Functional testing: Testing a functionality in the project (may interact
with dependencies) to confirm that the code is doing the right things.
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- vemsimyourpociasasotvare
Testing in Python

® unittest: Python package from the standard library.

* nose! deprecated Python package.

* pytest: the most popular Python package (easier, more flexible).
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Code coverage

¢ Definition: a measure used to describe the degree to which the source
code of a program is executed when a particular test suite is run.

e Common metric: percentage of lines that have been executed at least
once. Available at any level:

» in the whole module,
» in any submodule,

» in any file.

® Reliant on the report of the testing tool used to run the test suite.
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- vemsimyourpociasasotvare
Code coverage in Python

® coverage: general tool (initially developed to be used with unittest).

® pytest—cov: plugin for pytest.
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Code coverage (online)

® Reporting the code coverage results online has several upsides:
» Information easily available to anyone (no need to run a command)
» User-friendly report (sunburst graph, code coverage at any level, etc.)

» Can be included in the continuous integration pipeline (e.g., monitoring
the change in code coverage in a pull request)

e Available tools: KP Codecov

» Codecov

> Coveralls COVERALLS
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. Managingyourprojectasasofware
Documentation

* A software (and more generally any source code) without its
corresponding documentation is almost useless.

¢ Key elements of any documentation:
» Installation instructions
» User guide
» API documentation

» Examples

e Other useful elements: getting started, tutorials, changelog, glossary,
developer guide, etc.
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- vemsimyourpociasasotvare
Documentation in Python

® Sphinx: Python documentation generator

» Originally created for the Python documentation

» Expanded to other programming languages (C, PHP, Ruby, JavaScript, etc.)
» Many useful extensions, including:

* sphinx.ext.autodoc: Include documentation from docstrings

* sphinx.ext.autodoc: Generate autodoc summaries

* sphinx.ext.viewcode: Add links to highlighted source code

* sphinx.ext.doctest: Test snippets in the documentation

* sphinx_gallery: Build an HTML gallery of examples from any set of Python
scripts

® MkDocs: project documentation with Markdown
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- vemsimyourpociasasotvare
Documentation (online)

A website dedicated to the documentation is much more user-friendly
than a PDF file with hundreds or even thousands of pages.

ReadTheDocs: Simplify software documentation by automating building,
versioning, and hosting of your docs for you.

GitHub Pages: Websites for you and your projects.
» Hosted directly from your GitHub repository.
» Just edit, push, and your changes are live.

Automatically redirect to another website if you own a dedicated domain.
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Continuous integration

e Rationale: Making sure that any version of the remote source code
always works.

e Content: linting, testing, code coverage, documentation, etc.

¢ Workflow: Before changing the remote source code:
@ Run the continuous integration locally.

@ Run the continuous integration remotely (several operating systems, several
versions of dependencies, etc.).

@ If successful, the changes can be merged.
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Continuous integration (online)

Many services available, all of them being free for open source projects (with
reasonable restrictions), including:

® Azure Pipelines Q Azure Pipelines
e Travis Cl Travis Cl
* CircleCl Qcircleci
e AppVeyor @ AppVeyor

e Jenkins
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 ytsiAPython Package for Time Series Classifiation |
Outline

e pyts: A Python Package for Time Series Classification
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D e e
What is pyts?

e Python package dedicated to time series classification.

e Objective: Make working on time series classification easy:

» Data loading utilities, preprocessing tools, implementations of many
algorithms,

» Under a unified application programming interface,

» Compatible with scikit-learn tools such as cross-validation and
pipelines.

® Published in the Open Source Section of Journal of Machine Learning
Research in 2020 [FJ20].
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 eyeeiAPython Padkagofor Time Seres lasieaon
Concrete example

N

Let’s see how the tools presented in the second
section are applied in this package.
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 ytsiAPython Package for Time Series Classifiation |
Thanks

Thank you for your attention
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