.. _sphx_glr_auto_examples_plot_bow.py: ============ Bag of Words ============ This example shows how you can transform a quantized time series (i.e. a time series represented as a sequence of letters) into a bag of words using :class:`pyts.bow.BOW`. .. rst-class:: sphx-glr-script-out Out:: Original time series: ['a' 'd' 'a' 'c' 'a' 'b' 'd' 'b' 'd' 'b' 'c' 'b' 'a' 'a' 'd' 'd' 'c' 'c' 'a' 'a' 'c' 'b' 'b' 'd' 'a' 'a' 'd' 'a' 'a' 'd'] Bag of words without numerosity reduction: {a, d, a, c, a, b, d, b, d, b, c, b, a, a, d, d, c, c, a, a, c, b, b, d, a, a, d, a, a, d} Bag of words with numerosity reduction: {a, d, a, c, a, b, d, b, d, b, c, b, a, d, c, a, c, b, d, a, d, a, d} | .. code-block:: python import numpy as np from pyts.bow import BOW # Parameters n_samples = 100 n_features = 30 n_bins = 4 window_size = 1 alphabet = np.array([chr(i) for i in range(97, 97 + n_bins)]) # Toy dataset rng = np.random.RandomState(41) X = alphabet[rng.randint(n_bins, size=(n_samples, n_features))] # Bag-of-words transformation bow = BOW(window_size, numerosity_reduction=False) X_bow = bow.fit_transform(X) bow_num = BOW(window_size, numerosity_reduction=True) X_bow_num = bow_num.fit_transform(X) print("Original time series:") print(X[0]) print("\n") print("Bag of words without numerosity reduction:") print(''.join(["{", X_bow[0].replace(" ", ", "), "}"])) print("\n") print("Bag of words with numerosity reduction:") print(''.join(["{", X_bow_num[0].replace(" ", ", "), "}"])) **Total running time of the script:** ( 0 minutes 0.061 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_bow.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_bow.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_