.. _sphx_glr_auto_examples_plot_dft.py: ========================== Discrete Fourier Transform ========================== This example shows how you can approximate a time series using only some of its Fourier coefficients using :class:`pyts.approximation.DFT`. .. image:: /auto_examples/images/sphx_glr_plot_dft_001.png :align: center .. code-block:: python import numpy as np import matplotlib.pyplot as plt from pyts.approximation import DFT # Parameters n_samples, n_features = 100, 48 # Toy dataset rng = np.random.RandomState(41) X = rng.randn(n_samples, n_features) # DFT transformation n_coefs = 20 norm_mean = False norm_std = False dft = DFT(n_coefs=n_coefs, norm_mean=norm_mean, norm_std=norm_std) X_dft = dft.fit_transform(X) # Compute the approximation for the first time series timestamps = np.arange(n_features) / n_features x_dft = np.zeros(n_features) for n in range(n_coefs // 2): x_dft += X_dft[0, 2 * n] * np.cos(2 * n * np.pi * timestamps) / n_features x_dft += X_dft[0, (2 * n) + 1] * np.sin(2 * n * np.pi * timestamps) / \ n_features # Show the results for the first time series plt.figure(figsize=(12, 8)) plt.plot(X[0], 'o-', label='Original') plt.plot(x_dft, 'o--', label='DFT - {0} coefs'.format(n_coefs)) plt.legend(loc='best', fontsize=14) plt.show() **Total running time of the script:** ( 0 minutes 0.024 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_dft.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_dft.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_