.. _sphx_glr_auto_examples_plot_gaf.py: ===================== Gramian Angular Field ===================== This example shows how you can transform a time series into a Gramian Angular Field using :class:`pyts.image.GASF` for Gramian Angular Summation Field and :class:`pyts.image.GADF` for Gramian Angular Difference Field. .. image:: /auto_examples/images/sphx_glr_plot_gaf_001.png :align: center .. code-block:: python import numpy as np import matplotlib.pyplot as plt from pyts.image import GASF, GADF # Parameters n_samples, n_features = 100, 144 # Toy dataset rng = np.random.RandomState(41) X = rng.randn(n_samples, n_features) # GAF transformations image_size = 24 gasf = GASF(image_size) X_gasf = gasf.fit_transform(X) gadf = GADF(image_size) X_gadf = gadf.fit_transform(X) # Show the results for the first time series plt.figure(figsize=(16, 8)) plt.subplot(121) plt.imshow(X_gasf[0], cmap='rainbow', origin='lower') plt.title("GASF", fontsize=16) plt.subplot(122) plt.imshow(X_gadf[0], cmap='rainbow', origin='lower') plt.title("GADF", fontsize=16) plt.show() **Total running time of the script:** ( 0 minutes 0.120 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_gaf.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_gaf.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_