.. _sphx_glr_auto_examples_plot_mcb.py: ============================ Multiple Coefficient Binning ============================ This example shows how the MCB algorithm transforms a dataset of time series of real numbers into a list of sequences of letters. It is implemented as :class:`pyts.quantization.MCB`. .. image:: /auto_examples/images/sphx_glr_plot_mcb_001.png :align: center .. code-block:: python import numpy as np import matplotlib.lines as mlines import matplotlib.pyplot as plt from pyts.quantization import MCB # Parameters n_samples, n_features = 6, 12 # Toy dataset rng = np.random.RandomState(41) X = rng.randn(n_samples, n_features) # MCB transformation n_bins = 3 quantiles = 'empirical' mcb = MCB(n_bins=n_bins, quantiles=quantiles) X_mcb = mcb.fit_transform(X) # Compute bins bins = mcb._bins # Show the results for the first time series plt.figure(figsize=(12, 8)) # First time series plt.plot(X[0], 'o-', label='TS 1') for x, y, s in zip(range(n_features), X[0], X_mcb[0]): plt.text(x, y, s, ha='center', va='bottom', fontsize=20, color='#1f77b4') # Second time series plt.plot(X[5], 'o-', label='TS 2') for x, y, s in zip(range(n_features), X[5], X_mcb[5]): plt.text(x, y, s, ha='center', va='bottom', fontsize=20, color='#ff7f0e') plt.hlines(bins, np.arange(n_features) - 0.5, np.arange(n_features) + 0.5, color='g', linestyles='--', linewidth=0.7) plt.vlines(np.arange(n_features + 1) - 0.5, X.min(), X.max(), linestyles='--', linewidth=0.5) mcb_legend_1 = mlines.Line2D([], [], color='#1f77b4', marker='*', label='MCB TS 1 - {0} bins'.format(n_bins)) mcb_legend_2 = mlines.Line2D([], [], color='#ff7f0e', marker='*', label='MCB TS 2 - {0} bins'.format(n_bins)) first_legend = plt.legend(handles=[mcb_legend_1, mcb_legend_2], fontsize=14, loc=4) ax = plt.gca().add_artist(first_legend) plt.legend(loc='best', fontsize=14) plt.title("Multiple Coefficient Binning - TS = Time Series", fontsize=18) plt.show() **Total running time of the script:** ( 0 minutes 0.043 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_mcb.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_mcb.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_