.. _sphx_glr_auto_examples_plot_paa.py: ================================= Piecewise Aggregate Approximation ================================= This example shows how you can approximate a time series using :class:`pyts.approximation.PAA`. .. image:: /auto_examples/images/sphx_glr_plot_paa_001.png :align: center .. code-block:: python import numpy as np import matplotlib.pyplot as plt from pyts.approximation import PAA # Parameters n_samples, n_features = 100, 48 # Toy dataset rng = np.random.RandomState(41) X = rng.randn(n_samples, n_features) # PAA transformation window_size = 6 paa = PAA(window_size=window_size) X_paa = paa.transform(X) # Show the results for the first time series plt.figure(figsize=(12, 8)) plt.plot(np.arange(n_features), X[0], 'o-', label='Original') plt.plot(np.arange(window_size // 2, n_features + window_size // 2, window_size), X_paa[0], 'o--', label='PAA') plt.vlines(np.arange(0, n_features, window_size), X[0].min(), X[0].max(), color='g', linestyles='--', linewidth=0.5) plt.legend(loc='best', fontsize=14) plt.show() **Total running time of the script:** ( 0 minutes 0.040 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_paa.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_paa.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_