.. _sphx_glr_auto_examples_plot_rp.py: ================ Recurrence Plots ================ This example shows how you can transform a time series into a Recurrence Plot using :class:`pyts.image.RecurrencePlots`. .. image:: /auto_examples/images/sphx_glr_plot_rp_001.png :align: center .. code-block:: python import numpy as np import matplotlib.pyplot as plt from pyts.image import RecurrencePlots # Parameters n_samples, n_features = 100, 144 # Toy dataset rng = np.random.RandomState(41) X = rng.randn(n_samples, n_features) # Recurrence plot transformation rp = RecurrencePlots(dimension=1, epsilon='percentage_points', percentage=30) X_rp = rp.fit_transform(X) # Show the results for the first time series plt.figure(figsize=(8, 8)) plt.imshow(X_rp[0], cmap='binary', origin='lower') plt.show() **Total running time of the script:** ( 0 minutes 0.099 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_rp.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_rp.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_