.. _sphx_glr_auto_examples_plot_sax.py: ================================ Symbolic Aggregate approXimation ================================ This example shows how you can quantize a time series (i.e. transform a sequence of real numbers into a sequence of letters) using :class:`pyts.quantization.SAX`. .. image:: /auto_examples/images/sphx_glr_plot_sax_001.png :align: center .. code-block:: python import numpy as np import matplotlib.lines as mlines import matplotlib.pyplot as plt from scipy.stats import norm from pyts.quantization import SAX # Parameters n_samples, n_features = 100, 12 # Toy dataset rng = np.random.RandomState(41) X = rng.randn(n_samples, n_features) # SAX transformation n_bins = 3 quantiles = 'gaussian' sax = SAX(n_bins=n_bins, quantiles=quantiles) X_sax = sax.fit_transform(X) # Compute gaussian bins bins = norm.ppf(np.linspace(0, 1, n_bins + 1)[1:-1]) # Show the results for the first time series plt.figure(figsize=(12, 8)) plt.plot(X[0], 'o-', label='Original') for x, y, s in zip(range(n_features), X[0], X_sax[0]): plt.text(x, y, s, ha='center', va='bottom', fontsize=24, color='#ff7f0e') plt.hlines(bins, 0, n_features, color='g', linestyles='--', linewidth=0.5) sax_legend = mlines.Line2D([], [], color='#ff7f0e', marker='*', label='SAX - {0} bins'.format(n_bins)) first_legend = plt.legend(handles=[sax_legend], fontsize=14, loc=4) ax = plt.gca().add_artist(first_legend) plt.legend(loc='best', fontsize=14) plt.show() **Total running time of the script:** ( 0 minutes 0.028 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_sax.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_sax.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_