.. _sphx_glr_auto_examples_plot_ssa.py: ========================== Singular Spectrum Analysis ========================== This example shows how you can decompose a time series into several time series using :class:`pyts.decomposition.SSA`. .. image:: /auto_examples/images/sphx_glr_plot_ssa_001.png :align: center .. code-block:: python import numpy as np import matplotlib.pyplot as plt from pyts.decomposition import SSA # Parameters n_samples, n_features = 100, 48 # Toy dataset rng = np.random.RandomState(41) X = rng.randn(n_samples, n_features) # SSA transformation window_size = 15 grouping = [[0, 1]] ssa = SSA(window_size, grouping) X_ssa = ssa.fit_transform(X) # Show the results for the first time series plt.figure(figsize=(12, 8)) plt.plot(X[0], 'o-', label='Original') plt.plot(X_ssa[0, 0], 'o--', label='SSA') plt.legend(loc='best', fontsize=14) plt.show() **Total running time of the script:** ( 0 minutes 0.357 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_ssa.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_ssa.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_