.. _sphx_glr_auto_examples_plot_weasel.py: ============================================== Word ExtrAction for time SEries cLassification ============================================== This example shows how the WEASEL algorithm transforms a time series of real numbers into a sequence of frequencies of words. It is implemented as :class:`pyts.transformation.WEASEL`. .. image:: /auto_examples/images/sphx_glr_plot_weasel_001.png :align: center .. code-block:: python import numpy as np import matplotlib.pyplot as plt from pyts.transformation import WEASEL # Parameters n_samples, n_features = 100, 144 n_classes = 2 # Toy dataset rng = np.random.RandomState(41) X = rng.randn(n_samples, n_features) y = rng.randint(n_classes, size=n_samples) # WEASEL transformation weasel = WEASEL(n_coefs=2, window_sizes=[12, 24, 36], pvalue_threshold=0.2) X_weasel = weasel.fit_transform(X, y).toarray() # Visualize the transformation for the first time series plt.figure(figsize=(12, 8)) plt.bar(np.arange(X_weasel[0].size), X_weasel[0]) plt.xticks(np.arange(X_weasel[0].size), np.vectorize(weasel.vocabulary_.get)(np.arange(X_weasel[0].size)), fontsize=12, rotation=60) plt.xlabel("Words", fontsize=18) plt.ylabel("Frequencies", fontsize=18) plt.show() **Total running time of the script:** ( 0 minutes 4.152 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_weasel.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_weasel.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_