BOW

The documentation of the bow module.

The pyts.bop module includes bag-of-patterns algorithms.

class pyts.bow.BOW(window_size=4, numerosity_reduction=True)[source]

Bag Of Words.

Parameters:
window_size : int (default = 4)

Size of the window (i.e. the size of each word).

numerosity_reduction : bool (default = True)

If True, delete all but one occurence of back to back identical occurences of the same words.

Methods

fit([X, y]) Pass.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform a sequence of letters into a sequence of words.
fit(X=None, y=None)[source]

Pass.

Parameters:
X

ignored

y

Ignored

transform(X)[source]

Transform a sequence of letters into a sequence of words.

Parameters:
X : array-like, shape = [n_samples, n_features]
Returns:
X_new : array-like, size = [n_samples]

Transformed data.