Decomposition

The documentation of the decomposition module.

The pyts.decomposition module includes decomposition algorithms.

class pyts.decomposition.SSA(window_size, grouping=None)[source]

Singular Spectrum Analysis.

Parameters:
window_size : int

The size of the sliding window.

grouping : None, int or array-like (default = None)

The way the elementary matrices are grouped. If None, no grouping is performed. If an integer, the number of groups is equal to this integer. If array-like, each element must be a array-like containing the indices for each group.

Methods

fit([X, y]) Pass.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform the provided data.
fit(X=None, y=None)[source]

Pass.

Parameters:
X

ignored

y

Ignored

transform(X)[source]

Transform the provided data.

Parameters:
X : array-like, shape = [n_samples, n_features]
Returns:
X_new : array-like, shape = [n_samples, n_splits, n_features]

Transformed data. n_splits value depends on the value of grouping. If grouping=None, n_splits is equal to window_size. If grouping is an integer, n_splits is equal to grouping. If grouping is array-like, n_splits is equal to the length of grouping.