Preprocessing

The documentation of the preprocessing module.

The pyts.preprocessing module includes preprocessing algorithms.

class pyts.preprocessing.StandardScaler(norm_mean=True, norm_std=True)[source]

Standardize time series by removing mean and scaling to unit variance.

Parameters:
norm_mean : bool (default = True)

If True, center the data before scaling.

norm_std : bool (default = True)

If True, scale the data to unit variance.

Methods

fit([X, y]) Pass.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Perform standardization by centering and scaling.
fit(X=None, y=None)[source]

Pass.

Parameters:
X

Ignored

y

Ignored

transform(X)[source]

Perform standardization by centering and scaling.

Parameters:
X : array-like, shape = [n_samples, n_features]
y

Ignored

Returns:
X_new : array-like, shape = [n_samples, n_features]

Standardized data.