Quantization

The documentation of the quantization module.

The pyts.quantization module includes quantization algorithms.

class pyts.quantization.SAX(n_bins=4, quantiles=u'gaussian')[source]

Symbolic Aggregate approXimation.

Parameters:
n_bins : int (default = 4)

Number of bins (also known as the size of the alphabet).

quantiles : {‘gaussian’, ‘empirical’} (default = ‘gaussian’)

The way to compute quantiles. If ‘gaussian’, quantiles from a gaussian distribution N(0,1) are used. If ‘empirical’, empirical quantiles are used.

Methods

fit([X, y]) Pass.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Quantize the time series.
fit(X=None, y=None)[source]

Pass.

Parameters:
X

Ignored

y

Ignored

transform(X)[source]

Quantize the time series.

Parameters:
X : array-like, shape = [n_samples, n_features]
Returns:
X_new : array-like, shape = [n_samples, n_features]

Transformed data.

class pyts.quantization.MCB(n_bins=4, quantiles=u'gaussian')[source]

Multiple Coefficient Binning.

Parameters:
n_bins : int (default = 4)

The number of bins. Ignored if quantiles='entropy'.

quantiles : {‘gaussian’, ‘empirical’, ‘entropy’} (default = ‘gaussian’)

The way to compute quantiles. If ‘gaussian’, quantiles from a gaussian distribution N(0,1) are used. If ‘empirical’, empirical quantiles are used. If ‘entropy’, quantiles are computed using the breakpoints leading to the maximum information gain.

Methods

fit(X[, y]) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform the provided data.
fit(X, y=None)[source]

Fit the model according to the given training data.

Parameters:
X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the number of features.

y : None or array-like, shape = [n_samples] (default = None)

Class labels for each data sample.

Returns:
self : object
transform(X)[source]

Transform the provided data.

Parameters:
X : array-like, shape [n_samples, n_features]

The data used to scale along the features axis.

Returns:
X_new : array-like, shape [n_samples, n_features]
class pyts.quantization.SFA(n_coefs=None, anova=True, norm_mean=True, norm_std=True, n_bins=4, quantiles=u'entropy', variance_selection=False, variance_threshold=0.0)[source]

Symbolic Fourier Approximation.

Parameters:
n_coefs : None or int (default = None)

The number of Fourier coefficients to keep. If n_coefs=None, all Fourier coefficients are returned. If n_coefs is an integer, the n_coefs most significant Fourier coefficients are returned if anova=True, otherwise the first n_coefs Fourier coefficients are returned. A even number is required (for real and imaginary values) if anova=False.

anova : bool (default = False)

If True, the Fourier coefficients selection is done via a one-way ANOVA test. If False, the first Fourier coefficients are selected.

norm_mean : bool (default = True)

If True, center the data before scaling. If norm_mean=True and anova=False, the first Fourier coefficient will be dropped.

norm_std : bool (default = True)

If True, scale the data to unit variance.

n_bins : int (default = 4)

The number of bins. Ignored if quantiles='entropy'.

quantiles : {‘gaussian’, ‘empirical’, ‘entropy’} (default = ‘gaussian’)

The way to compute quantiles. If ‘gaussian’, quantiles from a gaussian distribution N(0,1) are used. If ‘empirical’, empirical quantiles are used. If ‘entropy’, quantiles are computed using the breakpoints leading to the maximum information gain.

variance_selection : bool (default = False)

If True, the Fourier coefficients with low variance are removed.

variance_threshold : float (default = 0.)

Fourier coefficients with a training-set variance lower than this threshold will be removed. Ignored if variance_selection=False.

Methods

fit(X[, y]) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform the provided data.
fit(X, y=None)[source]

Fit the model according to the given training data.

Parameters:
X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the number of features.

y : None or array-like, shape = [n_samples] (default = None)

Class labels for each data sample.

Returns:
self : object
transform(X)[source]

Transform the provided data.

Parameters:
X : array-like, shape [n_samples, n_features]

The data used to scale along the features axis.

Returns:
X_new : array-like, shape [n_samples]